Skip Navigation
Skip to contents

J Musculoskelet Trauma : Journal of Musculoskeletal Trauma

OPEN ACCESS

Articles

Page Path
HOME > J Musculoskelet Trauma > Volume 30(2); 2017 > Article
Review Article
Bone Substitutes and the Advancement for Enhancing Bone Healing
Dong-Hyun Lee, M.D., Ji Wan Kim, M.D., Ph.D.
Journal of the Korean Fracture Society 2017;30(2):102-109.
DOI: https://doi.org/10.12671/jkfs.2017.30.2.102
Published online: April 18, 2017

Department of Orthopaedic Surgery, Inje University Haeundae Paik Hospital, Busan, Korea.

Correspondence to: Ji Wan Kim, M.D., Ph.D. Department of Orthopaedic Surgery, Inje University Haeundae Paik Hospital, 875 Haeun-daero, Haeundae-gu, Busan 48108, Korea. Tel: +82-51-797-0668, Fax: +82-51-797-0669, bakpaker@hanmail.net

Copyright © 2017 The Korean Fracture Society. All rights reserved.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 53 Views
  • 0 Download
  • 2 Crossref
prev
  • With an aging population and the development of surgical techniques, there is a growing demand for bone reconstruction in areas of trauma, arthroplasty, and spinal fusion Although autogenous bone grafting may be the best method for stimulating bone repair and regeneration, there are still problems and complications, including morbidity related to bone harvesting and limitation of harvest amount. Allogeneic bone grafts have a limited supply and risk of transmission of infectious diseases. Over the past several decades, the use of bone substitutes, such as calcium phosphate, has increased; however, they have limited indications. Biomedical research has suggested a possibility of stimulating the self-healing mechanism by locally transmitting the external growth factors or stimulating local production through a gene transfer. In this review, we evaluate recent advances, including bone graft, bone substitutes, and tissue engineering.
  • 1. Goulet JA, Senunas LE, DeSilva GL, Greenfield ML. Autogenous iliac crest bone graft. Complications and functional assessment. Clin Orthop Relat Res, 1997;(339):76-81.Article
  • 2. Greenwald AS, Boden SD, Goldberg VM, et al. Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg Am, 2001;83:Suppl 2 Pt 2. 98-103.Article
  • 3. Campana V, Milano G, Pagano E, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med, 2014;25:2445-2461.ArticlePDF
  • 4. Moshiri A, Oryan A. Role of tissue engineering in tendon reconstructive surgery and regenerative medicine: current concepts, approaches and concerns. Hard Tissue, 2012;1:11. Article
  • 5. Garg NK, Gaur S, Sharma S. Percutaneous autogenous bone marrow grafting in 20 cases of ununited fracture. Acta Orthop Scand, 1993;64:671-672.Article
  • 6. Connolly J, Guse R, Lippiello L, Dehne R. Development of an osteogenic bone-marrow preparation. J Bone Joint Surg Am, 1989;71:684-691.Article
  • 7. Connolly JF. Injectable bone marrow preparations to stimulate osteogenic repair. Clin Orthop Relat Res, 1995;(313):8-18.
  • 8. Ross R, Raines EW, Bowen-Pope DF. The biology of plateletderived growth factor. Cell, 1986;46:155-169.Article
  • 9. Kitoh H, Kawasumi M, Kaneko H, Ishiguro N. Differential effects of culture-expanded bone marrow cells on the regeneration of bone between the femoral and the tibial lengthenings. J Pediatr Orthop, 2009;29:643-649.Article
  • 10. Manyalich M, Navarro A, Koller J, et al. European quality system for tissue banking. Transplant Proc, 2009;41:2035-2043.Article
  • 11. Shigeyama Y, D'Errico JA, Stone R, Somerman MJ. Commercially-prepared allograft material has biological activity in vitro. J Periodontol, 1995;66:478-487.
  • 12. Tomford WW. Transmission of disease through transplantation of musculoskeletal allografts. J Bone Joint Surg Am, 1995;77:1742-1754.Article
  • 13. Lohmann CH, Andreacchio D, Köster G, et al. Tissue response and osteoinduction of human bone grafts in vivo. Arch Orthop Trauma Surg, 2001;121:583-590.ArticlePDF
  • 14. Hamer AJ, Strachan JR, Black MM, Ibbotson CJ, Stockley I, Elson RA. Biomechanical properties of cortical allograft bone using a new method of bone strength measurement. A comparison of fresh, fresh-frozen and irradiated bone. J Bone Joint Surg Br, 1996;78:363-368.
  • 15. Stevenson S, Emery SE, Goldberg VM. Factors affecting bone graft incorporation. Clin Orthop Relat Res, 1996;(324):66-74.Article
  • 16. Sandhu HS, Grewal HS, Parvataneni H. Bone grafting for spinal fusion. Orthop Clin North Am, 1999;30:685-698.Article
  • 17. Enneking WF, Campanacci DA. Retrieved human allografts: a clinicopathological study. J Bone Joint Surg Am, 2001;83:971-986.
  • 18. Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am, 2002;84:454-464.
  • 19. Ullmark G, Obrant KJ. Histology of impacted bone-graft incorporation. J Arthroplasty, 2002;17:150-157.Article
  • 20. Lane JM. Bone morphogenic protein science and studies. J Orthop Trauma, 2005;19:S17-S22.Article
  • 21. Grabowski G, Cornett CA. Bone graft and bone graft substitutes in spine surgery: current concepts and controversies. J Am Acad Orthop Surg, 2013;21:51-60.Article
  • 22. Wildemann B, Kadow-Romacker A, Pruss A, Haas NP, Schmidmaier G. Quantification of growth factors in allogenic bone grafts extracted with three different methods. Cell Tissue Bank, 2007;8:107-114.
  • 23. Niederauer GG, Lee DR, Sankaran S. Bone grafting in arthroscopy and sports medicine. Sports Med Arthrosc, 2006;14:163-168.Article
  • 24. Kinney RC, Ziran BH, Hirshorn K, Schlatterer D, Ganey T. Demineralized bone matrix for fracture healing: fact or fiction? J Orthop Trauma, 2010;24:Suppl 1. S52-S55.Article
  • 25. Blokhuis TJ, Arts JJ. Bioactive and osteoinductive bone graft substitutes: definitions, facts and myths. Injury, 2011;42:Suppl 2. S26-S29.Article
  • 26. Parikh SN. Bone graft substitutes in modern orthopedics. Orthopedics, 2002;25:1301-1309. quiz 1310-1311.
  • 27. Moore DC, Chapman MW, Manske D. The evaluation of a biphasic calcium phosphate ceramic for use in grafting long-bone diaphyseal defects. J Orthop Res, 1987;5:356-365.
  • 28. Zwingenberger S, Nich C, Valladares RD, Yao Z, Stiehler M, Goodman SB. Recommendations and considerations for the use of biologics in orthopedic surgery. BioDrugs, 2012;26:245-256.
  • 29. Tay BK, Patel VV, Bradford DS. Calcium sulfate- and calcium phosphate-based bone substitutes. Mimicry of the mineral phase of bone. Orthop Clin North Am, 1999;30:615-623.
  • 30. Urist MR. Bone: formation by autoinduction. Science, 1965;150:893-899.
  • 31. Bishop GB, Einhorn TA. Current and future clinical applications of bone morphogenetic proteins in orthopaedic trauma surgery. Int Orthop, 2007;31:721-727.
  • 32. Slosar PJ, Josey R, Reynolds J. Accelerating lumbar fusions by combining rhBMP-2 with allograft bone: a prospective analysis of interbody fusion rates and clinical outcomes. Spine J, 2007;7:301-307.
  • 33. Govender S, Csimma C, Genant HK, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am, 2002;84:2123-2134.
  • 34. Friedlaender GE, Perry CR, Cole JD, et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am, 2001;83:Suppl 1. S151-S158.
  • 35. Baas J, Elmengaard B, Jensen TB, Jakobsen T, Andersen NT, Soballe K. The effect of pretreating morselized allograft bone with rhBMP-2 and/or pamidronate on the fixation of porous Ti and HA-coated implants. Biomaterials, 2008;29:2915-2922.
  • 36. Shields LB, Raque GH, Glassman SD, et al. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine (Phila Pa 1976), 2006;31:542-547.
  • 37. Holland TA, Mikos AG. Biodegradable polymeric scaffolds. Improvements in bone tissue engineering through controlled drug delivery. Adv Biochem Eng Biotechnol, 2006;102:161-185.
  • 38. Doll B, Sfeir C, Winn S, Huard J, Hollinger J. Critical aspects of tissue-engineered therapy for bone regeneration. Crit Rev Eukaryot Gene Expr, 2001;11:173-198.
  • 39. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006;27:3413-3431.
  • 40. Nie H, Wang CH. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. J Control Release, 2007;120:111-121.
  • 41. Lattanzi W, Parrilla C, Fetoni A, et al. Ex vivo-transduced autologous skin fibroblasts expressing human Lim mineralization protein-3 efficiently form new bone in animal models. Gene Ther, 2008;15:1330-1343.
  • 42. Caplan AI. Mesenchymal stem cells and gene therapy. Clin Orthop, 2000;379 Suppl. S67-S70.
  • 43. Evans C. Gene therapy for the regeneration of bone. Injury, 2011;42:599-604.
  • 44. Prockop DJ, Oh JY. Medical therapies with adult stem/progenitor cells (MSCs): a backward journey from dramatic results in vivo to the cellular and molecular explanations. J Cell Biochem, 2012;113:1460-1469.
  • 45. Parrilla C, Saulnier N, Bernardini C, et al. Undifferentiated human adipose tissue-derived stromal cells induce mandibular bone healing in rats. Arch Otolaryngol Head Neck Surg, 2011;137:463-470.
  • 46. Barba M, Cicione C, Bernardini C, et al. Spinal fusion in the next generation: gene and cell therapy approaches. ScientificWorldJournal, 2014;2014:406159.
  • 47. Murray TM, Rao LG, Divieti P, Bringhurst FR. Parathyroid hormone secretion and action: evidence for discrete receptors for the carboxyl-terminal region and related biological actions of carboxyl-terminal ligands. Endocr Rev, 2005;26:78-113.
  • 48. Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med, 2001;344:1434-1441.
  • 49. Aspenberg P, Genant HK, Johansson T, et al. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res, 2010;25:404-414.
  • 50. Aspenberg P, Malouf J, Tarantino U, et al. Effects of Teriparatide compared with Risedronate on recovery after Pertrochanteric hip fracture: results of a randomized, active-controlled, double-blind clinical trial at 26 weeks. J Bone Joint Surg Am, 2016;98:1868-1878.
  • 51. Bhandari M, Jin L, See K, et al. Does Teriparatide improve femoral neck fracture healing: results from a randomized placebo-controlled trial. Clin Orthop Relat Res, 2016;474:1234-1244.
  • 52. Ha YC, Park YG, Nam KW, Kim SR. Trend in hip fracture incidence and mortality in Korea: a prospective cohort study from 2002 to 2011. J Korean Med Sci, 2015;30:483-488.
  • 53. Hadji P, Zanchetta JR, Russo L, et al. The effect of teriparatide compared with risedronate on reduction of back pain in postmenopausal women with osteoporotic vertebral fractures. Osteoporos Int, 2012;23:2141-2150.
  • 54. Huang TW, Chuang PY, Lin SJ, et al. Teriparatide improves fracture healing and early functional recovery in treatment of osteoporotic intertrochanteric fractures. Medicine (Baltimore), 2016;95:e3626.
  • 55. Johansson T. PTH 1-34 (teriparatide) may not improve healing in proximal humerus fractures: a randomized, controlled study of 40 patients. Acta Orthop, 2016;87:79-82.
  • 56. Peichl P, Holzer LA, Maier R, Holzer G. Parathyroid hormone 1-84 accelerates fracture-healing in pubic bones of elderly osteoporotic women. J Bone Joint Surg Am, 2011;93:1583-1587.
  • 57. Song HK, Kim SJ, Lee JH, Yang KH. Intermittent parathyroid hormone treatment for stimulation of callus formation in elderly patients. J Korean Fract Soc, 2012;25:295-299.
  • 58. Tsuchie H, Miyakoshi N, Kasukawa Y, et al. The effect of teriparatide to alleviate pain and to prevent vertebral collapse after fresh osteoporotic vertebral fracture. J Bone Miner Metab, 2016;34:86-91.
  • 59. Romano CL, Romano D, Logoluso N. Low-intensity pulsed ultrasound for the treatment of bone delayed union or nonunion: a review. Ultrasound Med Biol, 2009;35:529-536.
  • 60. Rutten S, Nolte PA, Korstjens CM, van Duin MA, Klein-Nulend J. Low-intensity pulsed ultrasound increases bone volume, osteoid thickness and mineral apposition rate in the area of fracture healing in patients with a delayed union of the osteotomized fibula. Bone, 2008;43:348-354.
  • 61. Brydone AS, Meek D, Maclaine S. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc Inst Mech Eng H, 2010;224:1329-1343.

Figure & Data

REFERENCES

    Citations

    Citations to this article as recorded by  
    • Calcium phosphate injection technique for treatment of distal radius fracture
      Dae-Geun Kim, Byung Hoon Kwack
      Medicine: Case Reports and Study Protocols.2021; 2(9): e0117.     CrossRef
    • Experimental Study ofDohongsamul-tang(Taohongsiwu-tang) on Fracture Healing
      Hyun Ju Ha, Min-Seok Oh
      Journal of Korean Medicine Rehabilitation.2020; 30(2): 47.     CrossRef

    • Cite
      CITE
      export Copy Download
      Close
      Download Citation
      Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

      Format:
      • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
      • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
      Include:
      • Citation for the content below
      Bone Substitutes and the Advancement for Enhancing Bone Healing
      J Korean Fract Soc. 2017;30(2):102-109.   Published online April 30, 2017
      Close
    • XML DownloadXML Download
    We recommend
    Bone Substitutes and the Advancement for Enhancing Bone Healing
    Bone Substitutes and the Advancement for Enhancing Bone Healing

    J Musculoskelet Trauma : Journal of Musculoskeletal Trauma
    Close layer
    TOP