Vol. 38, No. 3, July 2025

Journal of Musculoskeletal Trauma

Vol. 38, No. 3, July 2025

e-jmt.org

pISSN 3058-6267 eISSN 3058-6275

Aims and Scope

Vol. 38, No. 3, July 2025

The Journal of Musculoskeletal Trauma is the official publication of the Korean Orthopaedic Trauma Association. It is an international, peer-reviewed, open access journal dedicated to advancing the science, education, and clinical care of musculoskeletal trauma. The journal provides a platform for the dissemination of high-quality research, innovative techniques, and multidisciplinary approaches that improve patient outcomes in the field of orthopedic trauma and related disciplines.

As an open access journal, all articles are freely available to readers worldwide, ensuring the widest possible dissemination of knowledge and promoting collaboration among researchers, clinicians, and educators.

The scope of the journal encompasses the prevention, diagnosis, treatment, and rehabilitation of musculoskeletal injuries, including but not limited to:

- Fractures, dislocations, and soft tissue injuries of the extremities and axial skeleton
- Advances in surgical techniques, implants, and prosthetic devices
- Biomechanical and biological research related to trauma and tissue healing
- Rehabilitation strategies and innovations for functional recovery
- Clinical and translational research bridging basic science and clinical practice

The journal invites submissions of original research articles, systematic reviews, meta-analyses, technical notes, and correspondence that contribute to the advancement of musculoskeletal trauma care. Submissions are welcomed from all regions of the world, promoting a diverse and inclusive exchange of knowledge and perspectives.

The *Journal of Musculoskeletal Trauma* serves as a resource for orthopedic surgeons, trauma specialists, researchers, rehabilitation professionals, and all healthcare providers involved in the care of musculoskeletal injuries. By fostering collaboration and disseminating cutting-edge findings, the journal aims to elevate the standards of trauma care globally.

Open Access

This is an open-access journal distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited for non-commercial purpose.

Publisher: The Korean Orthopaedic Trauma Association Editor-in-Chief: Jae Ang Sim

Publishing/Editorial Office

The Korean Orthopaedic Trauma Association 2F, 202-a5, 12-16, Dasanjungang-ro 146 beon-gil, Namyangju 12285, Korea Tel: +82-31-560-2187, Email: office@e-jmt.org

Printed by M2PI

#805, 26 Sangwon 1-gil, Seongdong-gu, Seoul 04779, Korea Tel: +82-2-6966-4930, Fax: +82-2-6966-4945, Email: support@m2-pi.com

This work is supported by the 'Lottery Fund' of the 'Ministry of Strategy and Finance' and the 'Science and Technology Promotion Fund' of the 'Ministry of Science and ICT,' contributing to the realization of social value and the development of national science and technology.

Published on July 25, 2025

© 2025 The Korean Orthopaedic Trauma Association.

 $\ensuremath{\mathfrak{G}}$ This paper meets the requirements of KS X ISO 9706, ISO 9706-1994 and ANSI/NISO Z39.48-1992 (permanence of paper).

Editorial Board

Editor-in-Chief

Jae Ang Sim, MD Department of Orthopedic Surgery, Gachon University, Korea

Deputy Editor

Ji Wan Kim, MD Department of Orthopedic Surgery, University of Ulsan, Korea

Managing Editor

Hyung Keun Song, MD Department of Orthopedic Surgery, Ajou University, Korea

Editorial Board

Seong-Eun Byun, MD Department of Orthopedic Surgery, Suc Hyun Kweon, MD Department of Orthopedic Surgery,

CHA University, Korea

Chul-Hyun Cho, MD Department of Orthopedic Surgery, Dae Gyu Kwon, MD Department of Orthopedic Surgery,

Keimyung University, Korea

Jihyo Hwang, MD Department of Orthopedic Surgery, Gwang Chul Lee, MD Department of Orthopedic Surgery,

Hallym University, Korea

Woong Kyo Jeong, MD Department of Orthopedic Surgery, Jun-Ku Lee, MD

Korea University, Korea

Jong-Hun Ji, MD Department of Orthopedic Surgery,

The Catholic University of Korea, Korea

Gu-Hee Jung, MD Department of Orthopedic Surgery,

Gyeongsang National University, Korea Hak-Jun Kim, MD Department of Orthopedic Surgery,

Korea University, Korea

Ji-Sup Kim, MD Department of Orthopedic Surgery,

Ewha Womans University, Korea

Joo-Hak Kim, MD Department of Orthopedic Surgery,

Hanyang University, Korea

Department of Orthopedic Surgery,

Kyungpook National University, Korea

Tae-Young Kim, MD Department of Orthopedic Surgery, Konkuk University, Korea

Jun-Gyu Moon, MD Department of Orthopedic Surgery, Korea University, Korea

Korea

Kwang Woo Nam, MD Department of Orthopedic Surgery,

Eulji University, Korea

Jin-Rok Oh, MD Department of Orthopedic Surgery,

Yonsei University, Korea

Wonkwang University, Korea

Inha University, Korea

Ilsan Hospital, Korea

Chosun University, Korea

Department of Orthopedic Surgery,

Department of Orthopedic Surgery,

Department of Orthopedic Surgery,

Pusan National University, Korea

The Catholic University of Korea,

National Health Insurance Service

Byung-Ho Yoon, MD Department of Orthopedic Surgery,

Ewha Womans University, Korea

Statistic Advisor

Joon-Woo Kim, MD

Kyung Joon Cha Department of Orthopedic Surgery,

Hanyang University, Korea

English Editor

Andrew Dombrowski Compecs Inc., Korea

Manuscript Editor

Hayoung Kim Infolumi, Korea **Layout Editor**

Sang Hyun Lee, MD

Se-Won Lee, MD

In A Park M2PI, Korea

Website and JATS XML file producer

Jeonghee Im M2PI, Korea

Contents Vol. 38, No. 3, July 2025

Review Articles

- 109 Current concepts in the management of phalangeal fractures in the hand Hyun Tak Kang, Jun-Ku Lee
- Atypical ulnar fractures: a narrative review of current concepts and a case of bilateral surgical management Chi-Hoon Oh, Hyun Tak Kang, Jun-Ku Lee

Original Articles

Biomechanical finite element analysis of a femoral neck system fixation construct for femur neck fractures and clinical implications

Hoon-Sang Sohn, Se-Lin Jeong, Gu-Hee Jung

143 Computational simulation of coracoclavicular screw insertion through the superior distal clavicular plate for clinical applications in Korean cadavers

Hyung-Lae Cho, Ji Han Choi, Se-Lin Jeong, Gu-Hee Jung

152 Lateral marginal fractures of the patella and patellofemoral pain

Jae-Ang Sim, Chul-Ho Kim, Ji Wan Kim

160 Risk factors of surgical complications after use of the femoral neck system: a random forest analysis

Chul-Ho Kim, Hyun-Chul Shon, Han Soul Kim, Ji Wan Kim, Eic Ju Lim

Correction

Author correction: "Comparison of outcomes of reinforced tension band wiring and precontoured plate and screw fixation in the management of Mayo type IIIB olecranon fractures"

Hyun Goo Kang, Tong Joo Lee, Samuel Jaeyoon Won

Current concepts in the management of phalangeal fractures in the hand

Hyun Tak Kang, MD¹, Jun-Ku Lee, MD^{1,2}

¹Department of Orthopedic Surgery, National Health Insurance Service Ilsan Hospital, Goyang, Korea

This review focuses on the treatment of hand fractures based on the anatomical location of the fractured phalanx, excluding the thumb, and examines recent studies on the topic. The main points are as follows: in most cases of hand fractures, conservative treatment should be prioritized over surgical intervention. The three key factors in determining whether surgical treatment is necessary are (1) whether the fracture is intraarticular, (2) the stability of the fracture itself, and (3) the extent of damage to surrounding soft tissues. The primary surgical treatment is closed reduction and Kirschner-wire fixation. The risk of rotational deformity increases with fractures closer to the proximal region. Intra-articular fractures may lead to subsequent stiffness and arthritis; thus, computed tomography is recommended to assess the fracture pattern. Anatomic reduction of intraarticular fragments is required, along with correction of the inherent joint instability. No surgical method has proven to be superior; it is advantageous for the surgeon to choose a surgical approach they are familiar with and confident in, based on the specific fracture and patient factors. Complications in hand fractures are various; the most frequent is stiffness, and nonunion is uncommon. Early joint motion is crucial in minimizing the risk of stiffness.

Keywords: Bone fractures; Hand; Finger phalanges; Treatment

Introduction

Hand fractures are common, with an incidence of 3.7 cases per 1,000 males and 1.3 cases per 1,000 females, accounting for 10%–30% of all fractures [1,2]. Compared to the metacarpals, the fingers are more exposed to external forces, making them more susceptible to injury. Consequently, they constitute over 50% of hand fractures, with distal phalanx fractures, including tuft fractures, being the most prevalent [3].

Hand fractures occur due to various causes. Sports-related injuries are more common in younger individuals, whereas work-related injuries tend to increase with age and are more frequently observed in adult males. Among the elderly, falls and traffic accidents are the most common causes of injury and occur more often in females [4,5]. However, there is ongoing debate regarding which digit is most susceptible to fracture. Some studies suggest that the fifth digit may be more vulnerable because of its anatomical structure and position, while other research indicates that the index or middle fingers may be more prone to fracture depending on the mechanism of injury

Review Article

Received: March 3, 2025 Revised: April 7, 2025 Accepted: May 4, 2025

Correspondence to:

Jun-Ku Lee, MD
Department of Orthopedic Surgery,
National Health Insurance Service Ilsan
Hospital, 100 Ilsan-ro, Ilsandong-gu,
Goyang 10444, Korea
Tel: +82-31-900-0340

E-mail: happynine@nhimc.or.kr

© 2025 The Korean Orthopaedic Trauma Association.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

²Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea

and exposure factors [5-7]. Approximately 70% of finger fractures are reported to occur in individuals between the ages of 11 and 45 [6].

Finger fractures are classified based on several factors, including the specific digit involved, the anatomical location of the fracture (proximal phalanx, middle phalanx, or distal phalanx), the fracture pattern (oblique, transverse, spiral, impacted, comminuted), the degree of displacement, the presence of joint involvement (fractures or dislocations), and the extent of soft tissue damage, including open fractures.

Despite the diverse and frequent patterns of finger fractures, they are often overlooked due to the small size of the bone fragments and their generally favorable healing process. However, finger fractures frequently involve complex injuries, including damage to tendons, nerves, and blood vessels, which may result in complications such as joint stiffness, weakness, malunion, traumatic arthritis, and functional sequelae of the hand. Therefore, accurate diagnosis and appropriate treatment are essential.

The goals of finger fracture treatment include achieving proper alignment, maintaining pain-free joints free from arthrosis, and ensuring a stable digit with a good range of motion (ROM) for functional movement [8]. Nevertheless, the majority of finger fractures do not require surgical intervention [5,9,10]. The three critical factors in determining the need for surgical treatment are the presence of an intraarticular fracture, the stability of the fracture, and the extent of soft tissue damage [11,12]. Stable extraarticular fractures can typically be managed conservatively. However, because of the wide variation in the location and pattern of finger fractures, establishing universal indications for surgical treatment is challenging [7]. Ultimately, the decision to perform surgical intervention rests with the treating surgeon. The choice of surgical technique also varies and includes options such as metal wires, screws, plates, and external fixation devices.

This review aims to evaluate recently published studies on the treatment of fractures according to the anatomical location of the finger bones, excluding thumb fractures.

Distal Phalangeal Fracture

Distal phalangeal fractures are the most common fractures of the hand, accounting for approximately 50% of all finger

fractures, according to some studies [7,13]. The distal phalanx is anatomically divided into the tuft, shaft, and base. In the case of distal phalangeal fractures, the surrounding soft tissue damage and its management are often more critical than the fracture itself [14].

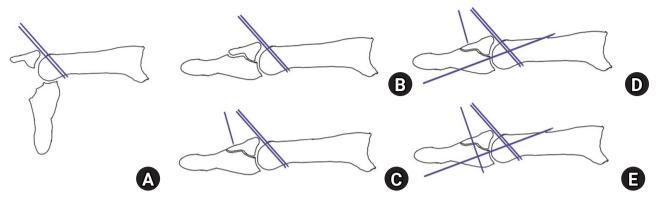
Tuft Fracture

The tuft fracture is the most prevalent type of distal phalanx fracture and occurs at the tip, distal to the tendon attachment site. It is primarily caused by crush injuries and often presents as a comminuted fracture. Tuft fractures are typically stable and can be treated conservatively due to the protection offered by the volar pulp and the fibrous soft tissue of the nail complex on the dorsal side. Stable pin fixation may be difficult to achieve due to the frequent comminuted nature of tuft fractures, and it may actually increase the risk of infection. Even when a fragment of the fractured tuft does not unite and remains a free bone fragment, it rarely results in symptoms. In symptomatic cases involving free bone fragments, removal of the fragment is performed, or, in very limited cases, osteosynthesis may be attempted [15]. A finger splint is applied to the distal interphalangeal (DIP) joint for 2 to 4 weeks to prevent stiffness, ensuring that the proximal interphalangeal (PIP) joint remains unaffected.

Tuft fractures are more likely to require attention to the damage to the perionychium surrounding the tuft rather than the fracture itself. Even in open fractures, the fracture can often be reduced simply by suturing the surrounding soft tissue [16]. In particular, when the nail (nail plate) is detached and the nail bed is torn or pulled away, the nail matrix should be examined and sutured to minimize deformation of the regenerating nail. In cases of subungual hematoma without nail detachment, surgical exploration is recommended if the hematoma exceeds 50% of the total nail area [17]. However, recent recommendations suggest that, in cases without fracture or with minimal displacement, observation or decompression via trephination is sufficient [18]. In cases where the nail displacement is significant, damage to the adjacent nail bed may occur. Even if the fracture fragment is connected externally, if it remains covered by the nail, there is a risk of future nail deformation or infection. Therefore, the surgeon may choose to remove the nail in order to examine the nail bed and, if necessary, perform the nail bed repair [19]. The removed

nail may be sutured back to the surrounding tissue after reduction to act as a splint until a new nail grows. In cases of secondary infection due to blood or fluid accumulation beneath the reduced nail plate, moist disinfection is maintained until the sutured nail bed dries, after which the new nail can be expected to regenerate [19].

Shaft Fracture


Fractures of the shaft of the distal phalanx are commonly transverse or longitudinal in nature [20]. When the fracture occurs at the distal attachment of the flexor tendon, a palmar flexion deformity may develop. However, in many cases of shaft fractures, the nail provides anatomical support, resulting in a stable fracture. If there is minimal displacement, surgery is typically not necessary, and a finger splint is applied for 3 to 6 weeks for immobilization. In cases of severe displacement or associated soft tissue injuries, such as damage to the nail bed, surgical intervention may be required. In such instances, the nail is removed, and the nail bed injury is assessed and repaired. The fracture can be stabilized using Kirschner-wires (K-wire). If the fixation provided by the metal pins in the distal phalanx is insufficient, K-wires may be temporarily inserted through the DIP joint for transarticular fixation to stabilize the fracture. In such situations, using relatively small K-wires measuring less than 1.1 inch is recommended to minimize cartilage damage. Once the fracture site has stabilized, the wires can be removed.

Base Fractures

Fractures of the base of the distal phalanx most commonly present as bony mallet finger, where the proximal fragment displaces dorsally. Bony mallet finger occurs when strong axial compression or flexion forces act on the DIP joint while the PIP joint remains extended, causing the proximal fragment, where the extensor tendon inserts, to displace dorsally [21]. A relatively rare mechanism of injury involves hyperextension of the DIP joint, leading to a dorsal impaction of the distal phalanx articular surface against the head of the middle phalanx. In such cases, the remaining distal phalanx may easily dislocate palmarly, often requiring surgical treatment. If left untreated, a bony mallet finger may progress to compensatory hyperextension of the PIP joint, resulting in a swan-neck deformity, or cause joint stiffness or posttraumatic arthritis due to intraarticular fractures.

Conservative treatment may be considered when there is no displacement of the bone fragment, less than 30% involvement of the articular surface, and no subluxation of the joint. If the fracture involves 30%-50% or more of the articular surface, instability may occur [22]. Okafor et al. [23] reported on 31 patients with bony mallet fingers treated conservatively, and found that 48% developed arthritis, 29% developed a swan-neck deformity, and an average of 8.3° of DIP joint drooping; however, most patients had satisfactory outcomes. The Cochrane Review also found no significant difference between conservative treatment and K-wire fixation [24]. However, Niechajev [25] recommended surgical treatment when the bone fragment exceeds 3 mm or there is subluxation of the DIP joint. Surgical treatment is most commonly performed using extension block K-wire fixation, first proposed by Ishiguro et al. [26] in 1988 and later modified by various surgeons. Modified techniques include using two extension block pins to equally prevent the extension of the fractured bone fragments [27], or passing a pin through the DIP joint in a diagonal direction or from the palmar side rather than from the fingertip to facilitate fixation [28]. Direct fixation of the bone fragment has also been attempted [29], and methods using dorsal metal pins for fracture reduction and fixation have been introduced (Fig. 1) [30]. While open reduction and other devices, such as small screws, hook plates, or pullout sutures, have been explored, these techniques are still used sparingly, and there is limited evidence to support their primary use [31].

Jersey fractures, in contrast to bony mallet fingers, are avulsion fractures of the palmarly located base of the distal phalanx caused by the flexor tendon [32]. These injuries typically occur due to sudden hyperextension forces while the DIP joint is actively flexed. The exact mechanism remains debated, but they are common in the fourth finger and often seen in rugby players, hence the name "Jersey" fracture (named after the sports jerseys worn by rugby players) [21]. Unlike bony mallet fingers, which have a contentious indication for surgical treatment, Jersey fractures almost always require surgery. They are classified into five types according to the Modified Leddy and Packer system, based on the degree of displacement of the flexor tendon and the associated distal phalanx fracture [33,34]. In cases with small fragments or no fracture but a true flexor tendon avulsion, proximal migration can occur, even reaching the

Fig. 1. Modified extension block pinning technique. One or two extension blocking pins are inserted from the dorsal aspect of the proximal phalanx head at around a 45° angle to prevent dorsal fragment displacement (A). Although the distal phalanx segment is extended, the reduction is not perfect (B). With the aid of a dorsal counterforce reduction Kirschner wire (K-wire), an axial transarticular K-wire is inserted from the volar aspect of the distal phalanx (C, D). A dorsal counterforce K-wire is additionally inserted to fix the dorsal fragment in addition to the conventional extension block technique (E).

palm in severe cases (type I). Generally, the dislocation does not extend beyond the palm, from the origin of the palmar lumbricals to the proximal palm. However, if the vincular blood supply is damaged and displacement occurs to the palm (type I), contracture progresses rapidly, and diagnosis and surgery within 7 to 10 days are recommended [21]. Type II, the most common, involves displacement to the PIP joint and is limited by the vincula longus, preventing further displacement. Larger bone fragments may become trapped at the A4 pulley (type III), further limiting displacement.

While rare, Jersey fractures can yield good outcomes with rapid diagnosis, accurate reduction of the flexor tendon or bone fragments, and secure fixation. Preoperative considerations include the degree of proximal tendon displacement, time to diagnosis, and the size of the bone fragment attached to the tendon. Depending on the fragment size, fixation may be performed using screws or pull-out sutures. Recent advances include the use of suture anchors to facilitate tendon attachment repair [35,36]. During active flexion of the DIP joint, forces of up to 28 N are applied, and the load-to-failure strength of pull-out suture fixation is 43 N, while a fine suture anchor can resist up to 69 N [37]. However, the small diameter of the distal phalanx may cause the screw's tip to penetrate the dorsal cortex, potentially irritating surrounding soft tissues such as the nail matrix [38].

In cases where diagnosis is delayed and primary suture repair is no longer feasible, the treatment approach should be discussed with the patient based on their current condition. For injuries involving the fourth or fifth finger, where only limited flexion of the DIP joint is restricted, observation may be sufficient without further treatment. If patients complain of instability in the DIP joint, arthrodesis may be considered. In the second finger, where DIP joint flexion is crucial, tendon grafting or arthrodesis may be considered. However, these options depend on the surgeon's experience, and the results may not always be satisfactory, which should be explained to the patient preoperatively [21,39].

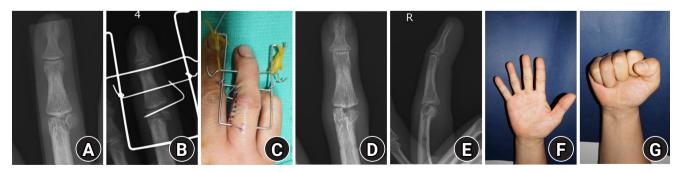
Fractures of the Middle Phalanx and Proximal Phalanx

Head and Neck Fracture

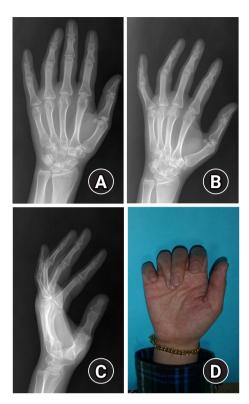
The head of the middle and proximal phalanges are composed of two condyles that form the joint surface at the base of the distal or middle phalanx. The stability of the joint is contributed by the thick palmar plate on the palmar side, the relatively thin joint capsule and extensor tendons on the dorsal side, and collateral ligaments on both sides. Three main types of classification are commonly used based on whether fractures involve the joints and whether displacement occurs [40]. Type I fractures are stable, nondisplaced intraarticular fractures, while type II (unilateral) and type III (bilateral) fractures, which are unstable, require surgical treatment. Depending on the degree of displacement or the size of the fracture fragment, closed or open reduction may be required, and fixation can be

achieved using metal pins, mini screws, or headless screws. However, it can be difficult to achieve stable fixation when the fragment size is small, and external fixation may be applied in cases of comminuted fractures or joint instability (Fig. 2).

Shaft Facture


Shaft fractures can occur in various patterns, including transverse, oblique, spiral, and comminuted, depending on the type of external force applied. Nonunion is rare, as long as there is no disruption of blood circulation due to soft tissue injury. In the middle phalanx, transverse or short oblique fractures (with fracture lengths less than 2-3 times the diameter of the phalanx) are common, while in the proximal phalanx, oblique or spiral fractures are more frequent [41]. The location of the fracture influences the sagittal finger deformity. In the middle phalanx, fractures occurring distal to the flexor digitorum superficialis insertion lead to apex volar angulation, while those in the proximal region tend to result in apex dorsal angulation. In the proximal phalanx, apex volar angulation is caused by the central tendon on the dorsal side and the intrinsic muscles on the volar side. These deformities are crucial for the surgeon to understand when performing fracture reduction. A shortening of the bone by more than 6 mm or angulation greater than 15° may be considered an indication for surgical treatment, although this is not consistently accepted due to the complexity of the fractures [41]. Furthermore, rotational deformity is considered more important than angulation in the sagittal plane. Rotational deformity is often difficult to assess with X-rays alone, and physical examination is necessary to evaluate whether a rotational deformity is present, helping guide the decision for surgical intervention when needed. The pattern of rotational deformity varies based on the location of the fracture, with fractures in the proximal phalanx having a longer distance to the fingertip compared to the middle phalanx, meaning even a small rotational deformity can have a significant impact at the fingertip.

Base Facture


A base fracture may present as a transverse fracture occurring outside of the joint, though the fracture line originating from the base can extend to an intraarticular fracture or propagate from a shaft fracture, extending to the proximal base. In intraarticular fractures, joint incongruity is a key criterion for surgical treatment decisions, as it can lead to complications such as limited joint ROM and posttraumatic osteoarthritis. These fractures are among the most difficult to treat in hand fractures.

In the case of extraarticular transverse fractures of the proximal phalanx, even if the fracture does not appear severe on X-ray alone, rotational deformity may still be present. Therefore, a diagnosis should not be based solely on X-ray findings, and a thorough physical examination should be performed before surgery to prevent the complication of rotational malunion [9] (Fig. 3).

A common type of base fracture that typically heals without surgical intervention is the avulsion fracture. These fractures are often caused by hyperextension and occur at

Fig. 2. Distraction dynamic external fixator for displaced condylar fracture of the proximal phalanx. Open reduction was required for a displaced articular fracture involving the condyle of the proximal phalangeal head of the fourth finger (A). Due to the presence of small fracture fragments, the fracture was stabilized using a distraction dynamic external fixator and a temporary Kirschner wire (B, C). Bone union was achieved; however, malunion persisted in the coronal plane (D, E). Despite the malunion, there was no functional impairment of hand movement (F, G).

Fig. 3. Proximal phalanx fracture of fourth finger with difference between X-ray findings and physical examination. Fracture of the proximal phalanx base of the fourth finger was shown with minimal displacement on the X-ray (A-C). However, finger overlap due to rotational displacement was observed on physical examination (D).

the base of the middle phalanx, frequently resulting in pain at the PIP joint. Unless there is additional rupture of the collateral ligaments, these fractures typically do not cause joint instability due to the small size of the bone fragments. After pain is controlled with splint fixation, good results can often be achieved with early joint movement [42,43].

The metacarpophalangeal (MCP) joint and PIP joints have collateral ligaments on both sides, providing stability in the coronal plane. When excessive external force is applied, collateral ligament injury may occur. However, avulsion fractures involving the middle or proximal phalanx, including the bone fragments caused by collateral ligament, are common. If the displacement of the bone fragment is less than 2 mm, conservative treatment can be pursued. However, it is more important to assess the joint instability in the coronal plane caused by functional failure of the collateral ligaments than to focus on bone fragment displacement. If instability is not present, conservative

treatment using buddy taping or splint fixation is possible [41].

In the case of an intraarticular fractures, subluxation or dislocation may occur simultaneously with displacement of bone fragments. The clinically high incidence and varied treatment outcomes of PIP joint dislocations will be discussed further.

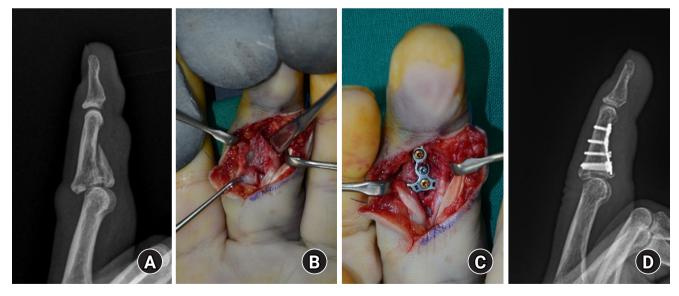
Fractures and Dislocations of the PIP Joint

Compared to the DIP joint, which contributes less to overall finger movement, the PIP joint is a crucial component of finger function. It accounts for approximately 85% of the total ROM, about 100° of flexion and extension [44].

Intra-articular fractures of PIP joint are classified based on the location and characteristics of the bone fragments, such as volar, dorsal, or pilon fractures, as well as direction of dislocation including dorsal, volar, or lateral dislocations. When the size of the intraarticular bone fragments is less than 30% of the joint surface, the fracture is generally considered stable. However, stability decreases as the fragment size increases. If the bone fragment covers more than 50% of the joint surface, instability may occur, requiring surgical intervention [20,43]. If the fracture is stable and the joint surfaces are congruent without signs of subluxation, conservative treatment, such as splint immobilization or buddy taping for 3 to 4 weeks, may be considered. Depending on the direction of instability, the immobilization position can be adjusted to limit either extension or flexion. Regular outpatient follow-up is necessary to monitor potential dislocations or further fragment displacement [43].

The decision to pursue surgical treatment, including the choice of surgical method, should consider factors such as the location and comminution of the bone fragments, as well as the degree of dislocation. Additionally, patient factors such as age and functional needs, and the surgeon's experience, preference, and confidence must also be considered. Several surgical techniques have been reported, including closed reduction with K-wire fixation [45], extension block pinning [46], open reduction and internal fixation [47], external fixation [48], volar plate arthroplasty [49], and hemi-hamate arthroplasty [50]. The precise reduction of intraarticular fragment and secure fixation can promote faster recovery of joint motion and cartilage remodeling, leading to favorable results [43,47,51].

However, prior studies have shown that surgical out-


comes vary, with some reporting poor results. Finsen [52] reported three cases of postoperative infection, one case of arthrodesis, and one case of amputation among 18 patients treated with Suzuki's pins and rubber traction.

Fracture-dislocations of the PIP joint are most commonly associated with dorsal dislocations following volar fractures [43,47]. Even in the absence of complete dislocation, subluxation can lead to subsequent joint stiffness, emphasizing the importance of accurate diagnosis and appropriate treatment. The "V" sign, observed on lateral radiographs of the middle phalanx, can indicate subluxation when there is widening of the dorsal joint surface. In cases of subluxation, approximately 30° of flexion is possible, however as flexion progresses, instability increases, leading to further dislocation and difficulty in achieving additional flexion, which may require surgical intervention [43]. The author's group has reported favorable outcomes with internal fixation using small-sized plates or screws following fracture reduction via a volar approach in PIP joint dorsal fracture-dislocations (Fig. 4) [44]. If there is significant comminution that makes joint surface preservation difficult, hemi-hamate arthroplasty using the distal hamate articular ridge may be considered (Fig. 5) [50].

Pilon-type fractures occur due to axial compression, leading to intraarticular fragment depression and, addi-

tionally, the separation and displacement of volar or dorsal fragments. Instability primarily increases during extension. Given the comminuted nature and displacement of intraarticular fragments, many of these fractures require surgical treatment, which is generally more challenging than other types of fracture displacement [9]. A surgical approach often involves a volar approach to expose the entire base of the proximal phalanx by opening the joint capsule and fully hyperextending the PIP joint to 180° (shotgun approach), though this may result in increased soft tissue dissection. In cases where fracture displacement is not severe, closed reduction and K-wire fixation may be attempted. The depressed articular fragments can be reduced into the proximal phalanx and secured with subsequent K-wires (Fig. 6). Recently, Park et al. [53] reported good outcomes with a technique that does not require joint exposure, in which an extraarticular cortical window is created to perform trans-osseous reduction of the depressed intraarticular fragments, followed by fixation with low-profile locking plates (Fig. 7). This technique results in less soft tissue dissection compared to a volar approach and facilitates easier reduction of the articular fragments, ultimately enabling early joint mobilization through locking plate fixation.

Volar dislocations are relatively rare and are often associated with the attachment of the central slip to the dorsal

Fig. 4. Fracture of the base of the middle phalanx with dorsal subluxation. Subluxation of the proximal interphalangeal joint was caused by a basal fracture of the left third middle phalanx (A). The articular surface was reduced, and plate fixation was performed through a volar approach (B, C). The fracture surface was successfully reduced, and the subluxation was corrected (D). Case courtesy of SH Han from CHA University, Seongnam, Korea.

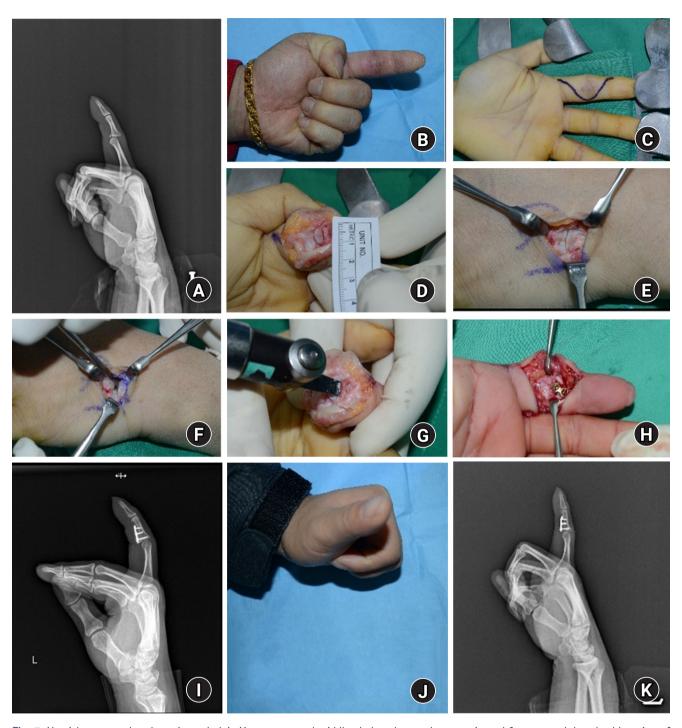


Fig. 5. Hemi-hamate arthroplasty. Lateral plain X-ray presented middle phalanx base volar comminuted fracture and dorsal subluxation of joint (A). The patient complaint limited flexion in preoperative clinic (B). Volar Bruner incision was designed (C) and the fractured site was visualized with shot-gun approach (D). After fracture fragment measurement, dorsal hamate-metacarpal joint is approached for hemi-hamate harvest (E, F). With fractured proximal phalanx base preparation, the harvested hamate bone was grafted and fixed with small sized plate and screws (G, H). Post operatively harvested bone well fixed with implant without joint subluxation (I). On 8 months of post-operation, patient recovered full flexion without arthritic change (J, K). Case courtesy of SH Han from CHA University, Seongnam, Korea.

Fig. 6. Closed reduction and K-wire fixation for depressed articular fragment and dorsal subluxation. In lateral C-arm image intensifier, middle phalanx articular fragment depressed and dorsal joint subluxation was identified (A). With extension blocking pin inserted, the depressed joint fragment reduced using intramedullary K-wire by closed method (B). Additional inter-fragment K-wire inserted from dorsal aspect in properly reduced position (C). Finally, additional volar flexion blocking pin was inserted (D).

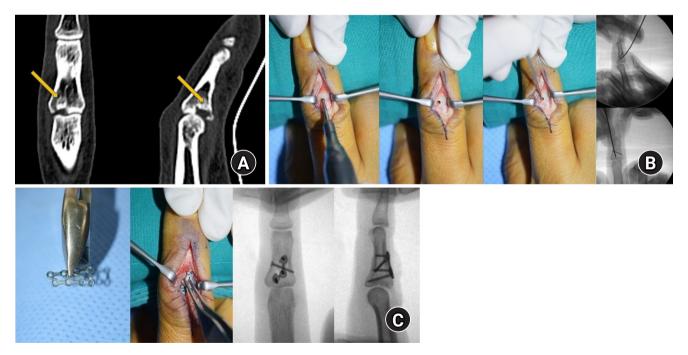


Fig. 7. A representative case of trans-osseous reduction and dorsal locking plate fixation. A preoperative computed tomography scan presented a volar lip fracture with a depressed intra-articular fragment (arrows) (A). Cortical window creation on the dorsal bare area of the middle phalanx, and reduction of the impacted fragment using a Kirschner-wire inserted through the window (B). Locking plate positioning after reduction and insertion of the most proximal screw to buttress the articular fragment (C). Case courtesy of JW Park from Korea University, Seoul, Korea.

fragment. If inadequately treated, they can result in extension lag of the PIP joint, and over time, the conjoint lateral band may shift volarly, causing hyperextension of the DIP joint and leading to a boutonniere deformity. When instability increases during flexion, when the fragment comprises more than 50% of the joint surface, or when extension is restricted or dislocation is observed during flexion, surgical treatment is indicated (Fig. 8).

Surgical Treatment

As noted previously, the decision-making factors for surgical treatment include the presence of intraarticular fractures, the stability of the fracture, and the degree of soft tissue injury. Additionally, patient-related factors, such as high physical activity levels, occupations that require heavy use of the hands, and the dominant hand, are also

Fig. 8. Middle phalanx base fracture and subluxation. Subluxation of the proximal interphalangeal joint was caused by a fracture of the base of the right third middle phalanx (A, B). Fractures and subluxations were reduced by dorsal plating and temporary K-wire fixation (C, D).

considered. In such cases, more robust fixation and early rehabilitation are often prioritized. Based on the location and pattern of the fracture, a computed tomography scan is performed to assess the need for surgery and establish a surgical plan. In addition to the traditional methods of closed reduction and K-wire fixation, various other surgical techniques are available. The surgeon should select the most appropriate method based on familiarity and expertise, considering the fracture characteristics and the patient's individual factors [9].

K-wire vs. Plate Fixation

The most commonly used fixation method for hand fractures is K-wire fixation. Typically, after closed reduction, K-wires are percutaneously inserted, and once the fracture site is stabilized, the pins are removed [5,54]. Although complications such as pin migration, loss of fracture stability, skin irritation, and potential infection may occur, these are relatively uncommon. According to Hsu et al. [54], the reported infection rate is 7%, most of which are superficial and rarely progress to osteomyelitis or pyogenic arthritis. The main advantage of K-wire fixation over plate fixation is the reduced risk of additional soft tissue damage, as well as the avoidance of adhesions between bone and tendon, which can lead to joint stiffness. Additionally, there is no need for secondary surgery to remove the plate, making K-wire fixation the preferred choice [55]. The inserted K-wires are typically removed at postoperative 10 to 28 days after insertion, depending on the fracture pattern, patient factors, and the surgeon's experience [9].

In cases where K-wire fixation alone cannot provide adequate stability, plate fixation may be used selectively. The type of plate (e.g., compression, tension band, bridge, or neutralization plate) depends on the method used to fix the fractures. When using plate fixation, it is essential that the screws do not penetrate beyond the distal cortex, to avoid causing damage to surrounding structures such as tendons, nerves, or blood vessels. After achieving stable fixation with the plate, early joint motion is encouraged. The skin incision and soft tissue dissection required for fracture reduction and plate fixation, as well as adhesions caused by the plate itself, can lead to joint stiffness, which is a significant disadvantage of plate fixation [9]. Depending on the surgeon's preference, some studies report better clinical outcomes with plate fixation compared to K-wire.

Additionally, robust mini and low-profile metal plates with superior fixation strength have been introduced, reducing the impact on the surrounding soft tissues of the hand [12,41,56]. Recent studies have also compared the use of bioabsorbable miniplates for metacarpal fractures with conventional metallic plates [57].

Screw Fixation

Screws smaller than 2 mm can be used for fragment fixation following either closed reduction or open reduction, utilizing lag screw or neutralization screw techniques. This method is commonly used for simple oblique fractures and provides intermediate stability between K-wire and plate, making it stable enough for early rehabilitation without causing irritation from the fixation device. However, this method is difficult to apply in cases of comminuted or transverse fractures, and the risk of causing additional fractures during screw insertion may arise if the bone fragments are small. In a prospective study by Horton et al. [58], comparing the closed reduction with K-wire fixation and open reduction with lag screw fixation for spiral or oblique fractures of the proximal metacarpal, no significant functional or radiological differences were observed between the two groups.

Recently, an intramedullary fixation technique using headless screws has been attempted following its initial introduction in 2010 by Boulton et al. [59] The use of headless screws for intramedullary fixation offers advantages such as a small incision (2–3 mm), high stability, minimal damage to the periosteum surrounding the fracture, and reduced soft tissue irritation from the fixation device, while also allowing direct compression of the fracture site [60]. This method is most suitable for extraarticular transverse or short oblique shaft fractures, and it can also be applied to base fractures, comminuted fractures, and open fractures [60]. However, it is absolutely contraindicated in cases of active infection or open growth plates, and caution should be exercised in the case of intraarticular fractures, long oblique fractures, and subchondral fractures [61].

The surgical technique can be divided into antegrade and retrograde insertion depending on the direction of screw insertion. The antegrade approach includes two methods: the intraarticular approach, which accesses only the joint surface of the proximal metacarpal base, and the transarticular approach, which passes through the meta-

carpal head to fix the fracture [62-64]. The intraarticular method is more commonly used [60].

The single headless screw fixation method, using the longest and thickest screw to stabilize the fracture, is often preferred. This method provides adequate fixation for simple fractures, such as transverse or short oblique shaft fractures. However, the fracture pattern can pose significant risks. In comminuted neck fractures, excessive compression from the headless screw may lead to bone shortening. Additionally, due to the relatively larger diameter of the medullary canal compared to the screw, fixation at the metaphysis may be inadequate, often necessitating the insertion of additional screws [62,65].

Wide-awake Local Anesthesia No Tourniquet

Wide-awake local anesthesia no tourniquet (WALANT) is a technique that uses a local anesthetic composed of 1% lidocaine, 1:100,000 epinephrine, and 8.4% bicarbonate to achieve both anesthesia and hemostasis simultaneously [66]. This technique was organized and popularized by Lalonde et al. [67], and has been widely applied in hand surgery. Since WALANT does not require a tourniquet, it avoids the pain associated with tourniquet use and allows for real-time assessment of hand function during surgery. This makes it particularly useful for tendon surgeries and has also been increasingly applied in hand fracture surgeries [67]. However, its effectiveness in finger fractures may be limited because, even before WALANT, local anesthesia was sufficient for performing surgery while assessing joint motion. Additionally, a finger tourniquet can create a bloodless field without the need for epinephrine. Although WALANT theoretically has broad applicability for all local anesthesia surgeries in hand fractures, it is considered particularly useful in cases where a finger tourniquet is difficult to apply, such as with fractures of the proximal phalanx shaft or base.

Complications

Stiffness

Stiffness is the most common complication following hand fractures [11,56]. It can affect not only the injured finger but also adjacent digits or even the entire hand [41]. Contributing factors include swelling and soft tissue damage resulting from trauma, infection, surgery-induced injury,

or vascular dysfunction [56,68]. Notably, prolonged immobilization—regardless of whether surgery was performed—is strongly associated with stiffness [11]. In the past, some physicians believed that refraining from finger joint motion for up to 6 to 8 weeks, until the late 1970s, was the best approach for healing [51]. However, joint stiffness resulting from prolonged immobilization can cause pain and burden for both the patient and physical therapist during rehabilitation, and in some cases, secondary surgeries such as capsular release or tenolysis may be required. These secondary procedures, however, do not always yield optimal results.

Early joint motion can help alleviate swelling and reduce stiffness [11,68]. Musculoskeletal tissues require adequate movement and stress to maintain health. The timing and method of initiating joint motion depend on the fracture pattern and fixation technique, and therefore, there are no standardized guidelines. In the case of unstable fractures, it is necessary to provide rigid fixation followed by early mobilization [69]. Generally, radiographic stability with callus formation is observed several weeks after achieving real fracture site stability, so it is recommended to begin joint motion around 2 to 4 weeks after pin removal [9].

The immobilization position is also important. A common limitation in finger motion occurs in the MCP joint, where flexion is often restricted due to the "cam effect", while in the PIP joint, extension is more frequently limited. For hand fractures, preventing future finger stiffness is best achieved by immobilizing the MCP joint at 50°–70° of flexion and the PIP joint from 15° to full extension, thereby maintaining the intrinsic positive position [8].

Malrotation

Malrotation and malunion in the coronal plane tend to result in poorer outcomes compared to sagittal plane malunion, as overlap between the fingers due to malunion can lead to significant functional impairments [56]. No standardized method currently exists to objectively assess the degree of rotational alignment in the fingers for guiding corrective surgery. With MCP and PIP joint flexion, finger overlapping or scissoring is regarded as malrotation [70-72]. Furthermore, on this position, second to fifth ray fingertip point can converge to scaphoid tubercle [72,73], which may warrant reoperation [74]. Therefore, malunion should be assessed early in the course of fracture healing or immedi-

ately after surgical fixation. Under general anesthesia, when active finger flexion is not possible, passively extending the wrist causes the fingers to flex due to the tension in the flexor tendons. This maneuver helps detect any overlap between the fingers, which may indicate a rotational deformity.

Nonunion

Nonunion of phalangeal fractures is uncommon, with a reported incidence of around 1% [56]. Factors that influence fracture healing include the fracture pattern including bone loss, stability, soft tissue damage such as open fractures, vascular injury, and fixation in a distracted fracture site. Although it may take considerable time to confirm fracture union and radiographic fracture lines can be visible for as long as 1 year, clinical signs and symptoms such as instability, gross deformity, implant failure, and persistent pain are far more important in determining nonunion [56].

While radiographic nonunion does not always lead to clinical complications, intervention is required when symptoms such as pain are present. Treatment options include osteosynthesis with bone grafting, arthrodesis, and amputation [7]. When osteosynthesis is attempted, careful preparation of the fracture ends is essential. Fenestration drilling can promote endosteal circulation at the fracture site, followed by placement of bone grafts in the prepared space. Although the fixation techniques used to restore normal anatomy in cases of nonunion are similar to those used for primary fracture treatment, it is advisable to pursue more stable fixation.

Conclusions

The goal of treatment for hand fractures is to maintain the normal alignment of the fractured finger, achieve a painfree state, and restore the full ROM to ultimately return the finger to its pre-injury condition. The treating physician decides between conservative and surgical treatment. When conservative treatment is chosen, decisions must be made regarding immobilization methods and the timing for initiating joint motion, and it is necessary to monitor any displacement through outpatient follow-up. When surgical treatment is chosen, it is important to understand the characteristics of the fracture to determine how to approach fracture fixation and which method to use. Postoperatively,

it is essential to check for infections at the surgical site and for any displacement of the fixation, while reducing the risk of stiffness through ROM exercises at the appropriate time.

Article Information

Author contributions

Conceptualization: HTK, JKL. Formal analysis: JKL. Methodology: HTK. Project administration: JKL. Supervision: JKL. Validation: HTK, JKL. Writing-original draft: HTK. Writing-review & editing: JKL. All authors read and approved the final manuscript.

Conflicts of interest

Jun-Ku Lee is an editorial board member of the journal but was not involved in the peer reviewer selection, evaluation, or decision process of this article. No other potential conflicts of interest relevant to this article were reported.

Funding

None.

Data availability

Not applicable.

Acknowledgments

We would like to express our sincere gratitude to Dr. Soo-Hong Han (Department of Orthopedic Surgery, CHA Bundang Medical Center), and Dr. Jong Woong Park Han (Department of Orthopedic Surgery, Korea University Anam Hospital) for providing the surgical images used in this review article.

References

- 1. Popova D, Welman T, Vamadeva SV, Pahal GS. Management of hand fractures. Br J Hosp Med (Lond) 2020;81:1-11.
- Yoon YC, Baek JR. Current concepts of fractures and dislocation of the hand. J Musculoskelet Trauma 2016;29:143-59.
- Feehan LM, Sheps SB. Incidence and demographics of hand fractures in British Columbia, Canada: a population-based study. J Hand Surg Am 2006;31:1068-74.
- 4. De Jonge JJ, Kingma J, van der Lei B, Klasen HJ. Phalangeal fractures of the hand: an analysis of gender and age-related incidence and aetiology. J Hand Surg Br 1994;19:168-70.

- Kremer L, Frank J, Lustenberger T, Marzi I, Sander AL. Epidemiology and treatment of phalangeal fractures: conservative treatment is the predominant therapeutic concept. Eur J Trauma Emerg Surg 2022;48:567-71.
- **6.** Butt WD. Fractures of the hand: I. description. Can Med Assoc J 1962;86:731-5.
- Heifner JJ, Rubio F. Fractures of the phalanges. J Hand Surg Eur Vol 2023;48(2 suppl):18S-26S.
- **8.** Freeland AE, Hardy MA, Singletary S. Rehabilitation for proximal phalangeal fractures. J Hand Ther 2003;16:129-42.
- **9.** Boeckstyns ME. Current methods, outcomes and challenges for the treatment of hand fractures. J Hand Surg Eur Vol 2020;45:547-59.
- Zhang M, Hirth M, Cole T, Hew J, Lim P, Ng S. A systematic review of conservatively managed isolated extra-articular proximal phalanx finger fractures in adults. JPRAS Open 2024;41:37-51.
- Neumeister MW, Winters JN, Maduakolum E. Phalangeal and metacarpal fractures of the hand: preventing stiffness. Plast Reconstr Surg Glob Open 2021;9:e3871.
- 12. El-Saeed M, Sallam A, Radwan M, Metwally A. Kirschner wires versus titanium plates and screws in management of unstable phalangeal fractures: a randomized, controlled clinical trial. J Hand Surg Am 2019;44:1091e1-9.
- 13. Schneider LH. Fractures of the distal phalanx. Hand Clin 1988;4:537-47.
- Liodaki E, Xing SG, Mailaender P, Stang F. Management of difficult intra-articular fractures or fracture dislocations of the proximal interphalangeal joint. J Hand Surg Eur Vol 2015;40:16-23.
- 15. Kim J, Ki SH, Cho Y. Correction of distal phalangeal nonunion using peg bone graft. J Hand Surg Am 2014;39:249-55.
- **16.** Liao JC, Das De S. Management of tendon and bony injuries of the distal phalanx. Hand Clin 2021;37:27-42.
- 17. Simon RR, Wolgin M. Subungual hematoma: association with occult laceration requiring repair. Am J Emerg Med 1987;5:302-4.
- Gellman H. Fingertip-nail bed injuries in children: current concepts and controversies of treatment. J Craniofac Surg 2009;20:1033-5.
- 19. Fehrenbacher V, Blackburn E. Nail bed injury. J Hand Surg Am 2015;40:581-2.
- **20.** Ganesh Kumar N, Chung KC. An evidence-based guide for managing phalangeal fractures. Plast Reconstr Surg 2021;147:846e-861e.

- **21.** Tuttle HG, Olvey SP, Stern PJ. Tendon avulsion injuries of the distal phalanx. Clin Orthop Relat Res 2006;445:157-68.
- **22.** Husain SN, Dietz JF, Kalainov DM, Lautenschlager EP. A biomechanical study of distal interphalangeal joint subluxation after mallet fracture injury. J Hand Surg Am 2008;33:26-30.
- **23.** Okafor B, Mbubaegbu C, Munshi I, Williams DJ. Mallet deformity of the finger. Five-year follow-up of conservative treatment. J Bone Joint Surg Br 1997;79:544-7.
- 24. Handoll HH, Vaghela MV. Interventions for treating mallet finger injuries. Cochrane Database Syst Rev 2004;(3): CD004574.
- Niechajev IA. Conservative and operative treatment of mallet finger. Plast Reconstr Surg 1985;76:580-5.
- Ishiguro T, Inoue K, Matsubayashi T, Ito T, Hashizume N. A new method of closed reduction for mallet fractures. J Jpn Soc Surg Hand 1988;5:444-7.
- 27. Lee YH, Kim JY, Chung MS, Baek GH, Gong HS, Lee SK. Two extension block Kirschner wire technique for mallet finger fractures. J Bone Joint Surg Br 2009;91:1478-81.
- **28.** Lee SK, Kim KJ, Yang DS, Moon KH, Choy WS. Modified extension-block K-wire fixation technique for the treatment of bony mallet finger. Orthopedics 2010;33:728.
- **29.** Yamanaka K, Sasaki T. Treatment of mallet fractures using compression fixation pins. J Hand Surg Br 1999;24:358-60.
- **30.** Lee SH, Lee JE, Lee KH, Pyo SH, Kim MB, Lee YH. Supplemental method for reduction of irreducible mallet finger fractures by the 2-extension block technique: the dorsal counterforce technique. J Hand Surg Am 2019;44:695.
- **31.** Lamaris GA, Matthew MK. The diagnosis and management of mallet finger injuries. Hand (N Y) 2017;12:223-8.
- **32.** Chang WH, Thomas OJ, White WL. Avulsion injury of the long flexor tendons. Plast Reconstr Surg 1972;50:260-4.
- **33.** Leddy JP, Packer JW. Avulsion of the profundus tendon insertion in athletes. J Hand Surg Am 1977;2:66-9.
- **34.** Smith JH Jr. Avulsion of a profundus tendon with simultaneous intraarticular fracture of the distal phalanx: case report. J Hand Surg Am 1981;6:600-1.
- **35.** Halat G, Negrin L, Erhart J, Ristl R, Hajdu S, Platzer P. Treatment options and outcome after bony avulsion of the flexor digitorum profundus tendon: a review of 29 cases. Arch Orthop Trauma Surg 2017;137:285-92.
- **36.** Kong AC, Kitto A, Pineda DE, Miki RA, Alfonso DT, Alfonso I. Four anchor repair of jersey finger. Iowa Orthop J 2021;41:95-100.
- 37. Huq S, George S, Boyce DE. Zone 1 flexor tendon injuries: a

- review of the current treatment options for acute injuries. J Plast Reconstr Aesthet Surg 2013;66:1023-31.
- **38.** McCallister WV, Ambrose HC, Katolik LI, Trumble TE. Comparison of pullout button versus suture anchor for zone I flexor tendon repair. J Hand Surg Am 2006;31:246-51.
- **39.** Stamos BD, Leddy JP. Closed flexor tendon disruption in athletes. Hand Clin 2000;16:359-65.
- **40.** London PS. Sprains and fractures involving the interphalangeal joints. Hand 1971;3:155-8.
- **41.** Gaston RG, Chadderdon C. Phalangeal fractures: displaced/nondisplaced. Hand Clin 2012;28:395-401.
- **42.** Singh J, Jain K, Ravishankar R. Outcome of closed proximal phalangeal fractures of the hand. Indian J Orthop 2011;45:432-8.
- Caggiano NM, Harper CM, Rozental TD. Management of proximal interphalangeal joint fracture dislocations. Hand Clin 2018;34:149-65.
- **44.** Leibovic SJ, Bowers WH. Anatomy of the proximal interphalangeal joint. Hand Clin 1994;10:169-78.
- 45. Barksfield RC, Bowden B, Chojnowski AJ. Hemi-hamate arthroplasty versus transarticular Kirschner wire fixation for unstable dorsal fracture-dislocation of the proximal interphalangeal joint in the hand. Hand Surg 2015;20:115-9.
- 46. Waris E, Alanen V. Percutaneous, intramedullary fracture reduction and extension block pinning for dorsal proximal interphalangeal fracture-dislocations. J Hand Surg Am 2010;35:2046-52.
- Lee JK, Kim YS, Lee JH, Jang GC, Han SH. Open reduction and internal fixation for dorsal fracture-dislocation of the proximal interphalangeal joint. Handchir Mikrochir Plast Chir 2020;52:18-24.
- **48.** Ruland RT, Hogan CJ, Cannon DL, Slade JF. Use of dynamic distraction external fixation for unstable fracture-dislocations of the proximal interphalangeal joint. J Hand Surg Am 2008;33:19-25.
- **49.** Lee LS, Lee HM, Hou YT, Hung ST, Chen JK, Shih JT. Surgical outcome of volar plate arthroplasty of the proximal interphalangeal joint using the Mitek micro GII suture anchor. J Trauma 2008;65:116-22.
- Williams RM, Kiefhaber TR, Sommerkamp TG, Stern PJ.
 Treatment of unstable dorsal proximal interphalangeal fracture/dislocations using a hemi-hamate autograft. J Hand Surg Am 2003;28:856-65.
- **51.** Buckwalter JA. Activity vs. rest in the treatment of bone, soft tissue and joint injuries. Iowa Orthop J 1995;15:29-42.

- 52. Finsen V. Suzuki's pins and rubber traction for fractures of the base of the middle phalanx. J Plast Surg Hand Surg 2010:44:209-13.
- 53. Park JH, Park GW, Choi IC, Kwon YW, Park JW. Dorsal transosseous reduction and locking plate fixation for articular depressed middle phalangeal base fracture. Arch Orthop Trauma Surg 2019;139:141-5.
- **54.** Hsu LP, Schwartz EG, Kalainov DM, Chen F, Makowiec RL. Complications of K-wire fixation in procedures involving the hand and wrist. J Hand Surg Am 2011;36:610-6.
- 55. von Kieseritzky J, Nordstrom J, Arner M. Reoperations and postoperative complications after osteosynthesis of phalangeal fractures: a retrospective cohort study. J Plast Surg Hand Surg 2017;51:458-62.
- Wellborn PK, Allen AD, Draeger RW. Current outcomes and treatments of complex phalangeal and metacarpal fractures. Hand Clin 2023;39:251-63.
- 57. Waris E, Ashammakhi N, Happonen H, et al. Bioabsorbable miniplating versus metallic fixation for metacarpal fractures. Clin Orthop Relat Res 2003;(410):310-9.
- 58. Horton TC, Hatton M, Davis TR. A prospective randomized controlled study of fixation of long oblique and spiral shaft fractures of the proximal phalanx: closed reduction and percutaneous Kirschner wiring versus open reduction and lag screw fixation. J Hand Surg Br 2003;28:5-9.
- Boulton CL, Salzler M, Mudgal CS. Intramedullary cannulated headless screw fixation of a comminuted subcapital metacarpal fracture: case report. J Hand Surg Am 2010;35:1260-3.
- **60.** Sivakumar BS, An VV, Graham DJ, Ledgard J, Lawson RD, Furniss D. Intramedullary compression screw fixation of proximal phalangeal fractures: a systematic literature review. Hand (N Y) 2022;17:595-601.
- Itadera E, Yamazaki T. Trans-metacarpal screw fixation for extra-articular proximal phalangeal base fractures. J Hand Surg Asian Pac Vol 2017;22:35-8.
- 62. del Pinal F, Moraleda E, Ruas JS, de Piero GH, Cerezal L. Minimally invasive fixation of fractures of the phalanges and metacarpals with intramedullary cannulated headless compression screws. J Hand Surg Am 2015;40:692-700.
- 63. Casal O, Vegas M, Estefania Diez M, Cano P, Maya Gonzalez

- J, Nevado E. Percutaneous osteosynthesis with headless cannulated screws in the treatment of metacarpal and proximal and middle phalanxes fractures of the hand. Rev Iberoam Cir Mano 2018:46:117-25.
- **64.** Jovanovic N, Aldlyami E, Saraj B, et al. Intramedullary percutaneous fixation of extra-articular proximal and middle phalanx fractures. Tech Hand Up Extrem Surg 2018;22:51-6.
- 65. Gaspar MP, Gandhi SD, Culp RW, Kane PM. Dual antegrade intramedullary headless screw fixation for treatment of unstable proximal phalanx fractures. Hand (N Y) 2019;14:494-9.
- **66.** Lalonde DH, Wong A. Dosage of local anesthesia in wide awake hand surgery. J Hand Surg Am 2013;38:2025-8.
- 67. Lalonde D, Bell M, Benoit P, Sparkes G, Denkler K, Chang P. A multicenter prospective study of 3,110 consecutive cases of elective epinephrine use in the fingers and hand: the Dalhousie Project clinical phase. J Hand Surg Am 2005;30:1061-7.
- **68.** Onishi T, Omokawa S, Shimizu T, Fujitani R, Shigematsu K, Tanaka Y. Predictors of postoperative finger stiffness in unstable proximal phalangeal fractures. Plast Reconstr Surg Glob Open 2015;3:e431.
- **69.** Wang ED, Rahgozar P. The pathogenesis and treatment of the stiff finger. Clin Plast Surg 2019;46:339-45.
- Day CS. Fractures of the metacarpals and phalanges. In: Green DP, Wolfe SW, Hotchkiss RN, Pederson WC, Kozin SH, editors. Green's operative hand surgery. Elsevier Churchill Livingstone; 2017. p. 231-77.
- Henry MH. Hand fractures and dislocations. In: Rockwood CA, Green DP, Bucholz RW, editors. Rockwood and Green's fractures in adults. Wolters Kluwer Health/Lippincott Williams & Wilkins; 2010. p. 711-80.
- 72. Jupiter JB, Axelrod TS, Belsky MR. Fractures and dislocations for the hand. In: Browner BD, editor. Skeletal trauma: basic science, management, and reconstruction. 3rd. Saunders; 2003. p. 1153-267.
- Ashkenaze DM, Ruby LK. Metacarpal fractures and dislocations. Orthop Clin North Am 1992;23:19-33.
- 74. Ring D. Malunion and nonunion of the metacarpals and phalanges. Instr Course Lect 2006;55:121-8.

Atypical ulnar fractures: a narrative review of current concepts and a case of bilateral surgical management

Chi-Hoon Oh, MD¹, Hyun Tak Kang, MD², Jun-Ku Lee, MD^{2,3}

Atypical ulnar fractures (AUFs) are rare complications that are often linked to long-term antiresorptive therapy. Although atypical femoral fractures are well-studied, AUFs lack standardized diagnostic and treatment protocols. This review summarizes current knowledge on AUFs, including their pathophysiology, diagnostic criteria, and management. A case of bilateral AUFs treated with two distinct osteosynthesis methods is presented, emphasizing the principles of biological healing and mechanical stabilization.

Keywords: Ulnar fracture; Bisphosphonates; Internal fracture fixation; Bone graft; Teriparatide

Introduction

The use of antiresorptive agents, primarily bisphosphonates, in the management of osteoporosis has led to emerging complications that require attention from medical professionals. One such complication is atypical fractures resulting from decreased bone formation and suppressed bone remodeling.

While early recognition of these fractures has predominantly focused on femoral shaft or subtrochanteric fractures, orthopedic surgeons have increasingly recognized atypical ulnar fractures (AUFs) occurring in the proximal ulna since the first report in 2011 [1], albeit with a limited number of case reports and literature reviews available to date [2,3]. Although much rarer, bilateral AUFs have also been reported [4,5].

Unlike typical ulnar fractures, which often respond well to open reduction and plate fixation, the same treatment approach as typical ulnar fractures may result in failure when applied to AUFs [4,6,7]. Nonetheless, a definitive therapeutic strategy has yet to be established due to the rarity of their occurrence. Recent clinical reports advocate for osteosynthesis techniques involving bone grafting for better outcomes [2,7].

This study aims to comprehensively review the clinical characteristics, diagnostic approaches, and therapeutic strategies for AUFs based on the existing literature, and to introduce cases of bilateral AUFs and describe our surgical treatment for osteosynthesis, which included the use of autologous iliac bone grafts. Importantly, we note that the specifics of our surgical techniques differed between the right cortical and left cancellous bone graft. This article provides a narrative review of current concepts in AUFs and illustrates them through a representative bilateral case.

Review Article

Received: May 14, 2025 **Revised:** July 11, 2025 **Accepted:** July 14, 2025

Correspondence to:

Jun-Ku Lee, MD
Department of 0

Department of Orthopedic Surgery, National Health Insurance Service Ilsan Hospital, 100 Ilsan-ro, Ilsandong-gu, Goyang 10444, Korea Tel: +82-31-900-0340 Email: happynine@nhimc.or.kr

© 2025 The Korean Orthopaedic Trauma Association.

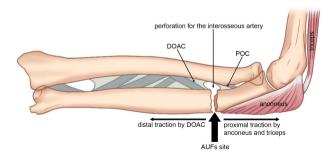
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

¹Department of Orthopedic Surgery, Korea University Medicine Ansan Hospital, Ansan, Korea

²Department of Orthopedic Surgery, National Health Insurance Service Ilsan Hospital, Goyang, Korea

³Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea

Pathophysiology


Several studies have demonstrated an association between bisphosphonate therapy and the occurrence of atypical femoral fractures (AFFs) involving the femoral shaft or subtrochanteric region [8-10]. Prolonged suppression of bone turnover and remodeling due to long-term bisphosphonate exposure has been shown to result in the accumulation of microdamage within the bone [8,11]. Oversuppression of bone turnover resulting from prolonged bisphosphonate therapy has been reported to reduce bone elasticity, increase resistance to plastic deformation, and decrease resistance to crack propagation, thereby contributing to the development of atypical fractures [12,13]. Tensile stress generated by axial loading has been identified as a biomechanical factor contributing to the development of fractures [14]. The AUFs have been understood to occur through mechanisms similar to those proposed for AFFs. The interosseous membrane of the forearm serves as a critical longitudinal stabilizer, preserving forearm function and facilitating load transmission between the radius and ulna [15]. A finite element analysis study demonstrated that the maximum tensile stress, measured at 7,769 MPa at 64.6% of the total ulnar length (153.4 mm of 237.5 mm from the ulnar head), was generated by a combination of axial loading on the ulna, proximal traction by the triceps brachii and anconeus muscles, and distal traction by the interosseous membrane of the forearm [16]. Tensile stress, generated and transmitted by the interosseous membrane a ligamentous complex in the forearm—plays a key role in the development of fractures [17]. The dorsal oblique accessory cord (DOAC) is a robust fibrous structure, whereas the proximal oblique cord (POC) has minimal functional significance in humans [18]. the DOAC is thought to prevent distal displacement of the radius while exerting a distal traction force on the ulna, with cadaveric studies reporting that the insertion points of the DOAC and POC are located at 61.8%-64.0% of the total ulnar length from the ulnar head, and the maximal tensile stress has been observed to occur between these two structures [15,16,19]. The maximal tensile stress occurs between the DOAC and the POC, generated by the opposing forces of the triceps brachii and anconeus muscles pulling the ulna proximally and the DOAC exerting a distal traction on the ulna, and this stress concentration may be further augmented by the anatomical feature wherein the proximal part of the middle portion of the interosseous membrane consists of a transparent membranous tissue with a perforation for the interosseous artery, leaving the ulna at that level partially unsupported (Fig. 1) [16].

Diagnosis

In their 2013 report, the American Society for Bone and Mineral Research (ASBMR) Task Force revised the case definition of AFFs based on accumulated clinical and radiographic evidence [20]. The revised definition refined the major features by specifying radiographic characteristics, including fracture location along the femoral diaphysis, a transverse or short oblique fracture orientation, minimal or absent comminution, and localized periosteal or endosteal thickening of the lateral cortex [20].

The diagnostic criteria for AUFs were derived from those established for AFFs. Heo et al. [21] subsequently modified the 2013 case definition proposed by the ASBMR Task Force to create a case definition for AUFs by incorporating the aforementioned differences (Table 1).

The diagnostic criteria for AUFs were adapted from those for AFFs by modifying the fracture location to correspond to the ulnar diaphysis. It was proposed that at least four of the five major features must be present for diagnosis, while minor features are not required but may be associated findings. In addition, "previous history or present symptom

Fig. 1. Anatomical structures related to tensile stress distribution in the proximal ulna. The dorsal oblique accessory cord (DOAC), a robust fibrous structure, inserts at 61.8%–64.0% of the total ulnar length and exerts a distal traction force on the ulna, opposing the proximal pulling forces of the triceps brachii and anconeus muscles. Maximal tensile stress is concentrated between the DOAC and the proximal oblique cord (POC), where a perforation in the proximal portion of the interosseous membrane leaves the underlying ulna partially unsupported. AUF, atypical ulnar fracture.

Table 1. Modified case definition for atypical ulnar fractures

Variable	Revised definition		
Fracture location	The fracture must be located on the ulnar diaphysis between 20% and 45% distal to the olecranon tip.		
In addition	At least 4 of 5 major features must be present. None of the minor features are required but they have sometimes been associated with these fractures.		
Major features			
M1	The fracture is associated with minimal or no trauma, as in a fall from a standing height or less.		
M2	The fracture line originates at the posterior cortex and is substantially transverse in its orientation, although it may become oblique as it progresses anteriorly across the ulna.		
M3	A complete fracture extends through both cortices and may be associated with an anterior spike; an incomplete fracture involves only the posterior cortex.		
M4	The fracture is noncomminuted or minimally comminuted.		
M5	Localized periosteal or endosteal thickening of the posterior cortex is present at the fracture site.		
Minor features			
m1	Diffuse cortical thickening of the whole cortex is present at the fracture site.		
m2	Unilateral or bilateral prodromal symptoms such as dull or aching pain in the forearm.		
m3	Bilateral incomplete or complete ulnar diaphysis fractures.		
m4	Delayed fracture healing.		
m5	Previous history or present symptom of atypical femoral fractures.		

of atypical femoral fractures" was added as a new minor feature (m5), reflecting the frequent coexistence of AFFs in patients with AUFs [21].

Treatment Strategies

Medical Strategy

To prevent atypical fractures, it has been suggested that the risk of AFFs decreases by more than 50% within the first year after discontinuation of oral bisphosphonate therapy and by over 80% after 3 years, supporting the practice of implementing drug holidays approximately every 5 years during long-term bisphosphonate treatment [22].

Several studies have reported favorable outcomes with the use of teriparatide for the healing of atypical fractures. Carvalho et al. [23] demonstrated that in three postmenopausal women with osteoporosis who sustained atypical subtrochanteric or femoral shaft fractures without major trauma during long-term bisphosphonate therapy, treatment with teriparatide resulted in significant increases in bone turnover markers and radiographic evidence of fracture healing within a few months.

Preclinical studies have also reported favorable effects of teriparatide treatment for AFFs. In five women with AFFs, 6 months of teriparatide therapy significantly increased the expression of mesenchymal stromal cell markers (CD73, CD90, and CD105), upregulated pluripotency-related

genes (notably *NANOG*), enhanced cellular proliferation, reduced cellular senescence, and improved both osteogenic and adipogenic differentiation. These findings suggest that teriparatide may rejuvenate bone marrow mononuclear cells, thereby promoting bone regeneration and indicating broader therapeutic potential [24].

For the management of incomplete AFFs, Feron et al. [25] proposed a treatment algorithm. When cortical radiolucency is present, conservative management including limited weight-bearing, calcium and vitamin D supplementation, and teriparatide therapy is recommended. Healing should be reassessed after 3 months; if clinical symptoms have resolved, radiographic healing is evident, and magnetic resonance imaging (MRI) demonstrates no bone edema, continued observation. However, if a radiolucent line persists or if there is no clinical or MRI improvement, prophylactic intramedullary nailing should be considered to prevent progression to complete fracture. Although a standardized treatment protocol for AUFs has not yet been established, it is reasonable to speculate that a management algorithm similar to that for AFFs may be applicable.

Although the evidence regarding the efficacy of vitamin D and calcium supplementation in promoting the healing of atypical fractures remains inconclusive and somewhat controversial, multiple studies recommend their administration as part of the overall management strategy during conservative treatment [20,21,25-27]. In the management

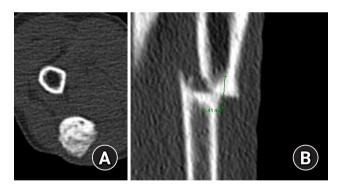
of patients with AUFs, vitamin D and calcium supplementation should not be used as standalone therapies but rather as adjunctive measures in conjunction with other treatment modalities.

Although rarely reported, other antiresorptive agents such as denosumab can also lead to AUFs by inhibiting bone resorption, altering bone turnover, and increasing bone mineral density [3,28,29]. While further research is needed, clinicians are advised to maintain a high index of suspicion for AUFs in patients receiving denosumab who present with relevant clinical symptoms and radiographic features.

Case Report and Plan to Surgical Treatment Strategy

Case

An 81-year-old female patient sustained injuries to both of her forearms while leaning forward near the tap and subsequently visited the emergency room. She required a cane for outdoor ambulation and had a medical history of cardiac valvular disease. Additionally, she had been prescribed ibandronate by her local hospital for the past 15 years to manage osteoporosis.


Upon initial X-ray examination, minimal displaced transverse and short oblique fractures were observed in both proximal 1/3 ulna (Fig. 2). Additionally, both fracture margins exhibited sclerotic changes with approximately 5 mm thickness at both fracture ends, which were consistent in both forearms. Computed tomographs revealed cortical bone thickness at the fracture site, with a loss of cancellous bone filling in the medullary canal, and cortical thickness on both sides of the fracture section measuring 4 to 5 mm (Fig. 3). Under general anesthesia, we attempted osteosynthesis using a bone graft harvested from the patient's right iliac bone, following complete resection of pathologic nonviable cortical bone.

Right forearm

The fracture site was easily identified on the surface due to skin protrusion (Fig. 4A). We performed a direct ulnar approach between the extensor carpi ulnaris and flexor carpi ulnaris muscles. Using an oscillating saw, we resected a 4 mm thickness of cortical bone in each, resulting in an 8-10 mm gap between the proximal and distal segments (Fig. 4B). We harvested a tricortical bone graft over 20 mm

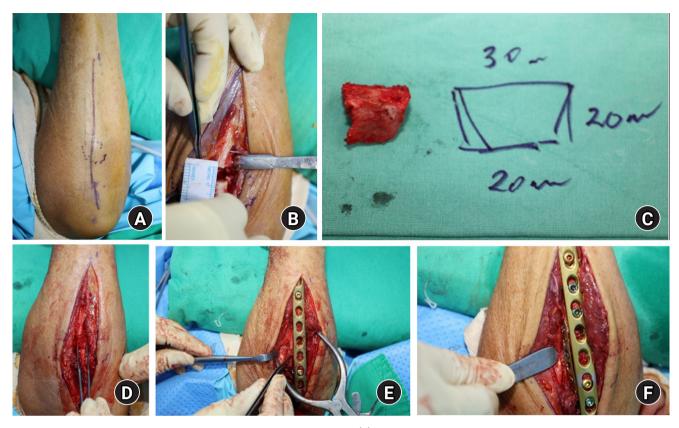


Fig. 2. Initial X-ray images of both forearms. Right forearm (A). Left forearm (B).

Fig. 3. Axial computed tomography image at the level of sclerotic bone lesion without medullary canal (A). The length of both sclerotic margin ends was over 8 mm (B).

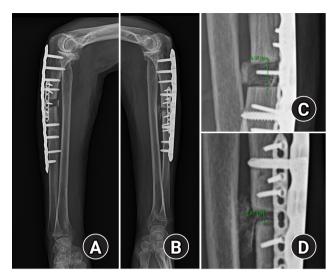
in size from the right iliac crest, intending to use 10 mm of harvested bone in each forearm (Fig. 4C). The graft was halved, and a 10 mm tricortical bone segment was inserted into the resected ulnar gap. The fracture site was then tapped to push it into the defect site (Fig. 4D). Subsequently, we applied a 10-hole 3.5 mm limited contact locking compression plate (LC-LCP), securing four screws in each

Fig. 4. The protruding atypical ulnar fracture was visible overlying skin (A). The overall gap created by resecting the sclerotic margins of both bone segments measured approximately 9 mm (B). Tricortical bone exceeding 20 mm in length was harvested from the right iliac crest (C). Half of the cortical bone was inset into the defect site (D). The 3.5 mm limited contact locking compression plate fixation (E). Additional 2.0 mm small plate augmentation at the lateral aspect of ulna (F).

segment (Fig. 4E). Additionally, a 2.0 mm small fragment plate was attached to hold the harvested bone at a 90° angle to the main plate (Fig. 4F).

Left forearm

Initially, we attempted to apply the same procedures to the left forearm. However, the remaining 10 mm length hard tricortical bone broke during tapping into the gap created by the same 4-5 mm resection in each fracture segment. Consequently, we modified our original plan, reducing the fracture site until the defect was closed, leaving a 4 mm gap before plate fixation. We applied a 3.5 mm LC-LCP and fixed proximal four screws and distal three screws above and below gap remaining. Additionally, we harvested cancellous bone from the initial iliac crest and inserted it into the defect site. The original cortical bone was further chopped and inserted into the defect area also. To provide further strength, we also applied a 2.0 mm small fragment


plate, similar to the approach used for the right arm.

Postoperative and follow-up management

Postoperatively, the bone-grafted gaps measured 9.5 mm and 3.8 mm in the right and left forearms, respectively (Fig. 5). Additionally, we conducted elbow and wrist X-rays, which revealed a positive ulnar variance of 3 mm in the right wrist and a negative variance of 2 mm in the left wrist (Fig. 6). Both wrists exhibited ulnocarpal impaction lesion in both lunates.

We discontinued ibandronate medication and initiated treatment with bone-forming and parathyroid hormone agents. Both femurs were examined to check for atypical femur lesions, yielding negative results. Bone mineral density evaluation showed T-scores of -3.8 and -2.3 in the average lumbar spine and femur neck areas, respectively.

A short arm splint, long enough to cover the fracture site yet allowing for elbow motion, was applied for 2 weeks

Fig. 5. Postoperative lateral plain X-rays of the right (A) and left (B) forearms. The gaps were measured as 9.9 mm on the right (C) and 3.9 mm on the left (D).

Fig. 6. Postoperative anteroposterior wrist X-ray showing positive and negative ulnar variance. (A) Right wrist. (B) Left wrist.

postoperatively. Given sustained fixation stability with the implant, we permitted elbow and wrist range of motion with intermittent removable brace protection.

Serial X-ray follow-ups were conducted at postoperative intervals of 1 week, 2 weeks, 4 weeks, 8 weeks, and 20

weeks, and thereafter. At the 20-week outpatient follow-up, the patient reported being free of pain at both forearm fracture sites, and both forearms showed complete union without any visible fracture lines (Fig. 7). For long-term follow-up, we contacted the patient's daughter by phone. She stated that the patient did not return to the outpatient clinic primarily because she had no symptoms and was able to maintain a full range of motion. Furthermore, the patient resides a considerable distance from the hospital, and she was recently diagnosed with lymphadenitis, which may be associated with cancer metastasis.

The patient and the patient's daughter provided consent for the publication of this case report, including all clinical images.

Case discussion

AUFs represent a distinct subset of ulnar fractures characterized by their unique presentation and etiology. Unlike typical ulnar fractures, AUFs occur spontaneously or with minimal trauma. Prolonged bisphosphonate use can induce microstructural changes in bone tissue, predisposing it to atypical fracture patterns under minimal or spontaneous loading.

To date, only a limited number of case—around 40—have reported on AUFs, and treatment principles have not been firmly established [2,6]. Though it is inconclusive in terms of operative treatment strategy, the classic approach of open reduction and internal fixation used in typical ulnar fractures carries a risk of treatment failure [7]. Nonsurgical treatment of AUFs had a high risk of nonunion. Incomplete or nondisplaced complete fractures that were treated non-surgically eventually progressed to complete displaced fractures and nonunion [14,27,30].

In terms of fracture healing through osteosynthesis, two main principles must be considered: biology and fixation stiffness. Addressing the biology aspect, the sclerotic bone margins at the fracture ends were deemed nonviable lesions, prompting us to resect them completely until normal cancellous bone canal appeared. After sufficient resection, the resulting gap necessitates bone grafting to facilitate the formation of new healthy bone in the gap area. Autologous bone grafts are generally considered to have higher osteogenic potential compared to allografts. However, no comparison was made regarding the superiority between cortical bone graft [7,31], which offers structural stability

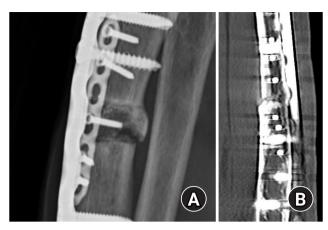


Fig. 7. At 20 weeks after the operation, the grafted bone was coaptated in the right arm (A) and united in the left arm (B).

advantages as in the right forearm, and cancellous bone graft [2], which offers advantages for osteogenesis as in the left forearm. Nonetheless, bone union was confirmed in both groups simultaneously.

The second consideration was fixation stability. We utilized a 3.5 mm LC-LCP straight plate in both forearms, applying a 10-hole plate in the right forearm and a 9-hole plate in the left. Additional 2.0 mm small fragment plates of 6 and 7 holes were added to the right and left forearms, respectively. Notably, the right small plate secured the grafted cortical bone. Although the optimal number of cortices and the length of the plate were not definitively determined, prior studies have suggested that greater stability is advisable compared to primary ulnar fractures. Some authors reported the usefulness of the dual plate for more rigid internal fixation [2,32].

Lastly, while not related to fracture healing, consideration must be given to the elbow and wrist joints in forearm fractures. Despite the absence of ulnar-sided wrist pain before or after the operation, ulnocarpal impaction was evident in the wrist radiogram, attributed to a lunate bone lesion. By reducing the resected bone margin in the left forearm, we could decrease the required amount of harvested cancellous bone graft while also unintentionally performing ulnar shortening osteotomy—a classic treatment for ulnocarpal impaction syndrome.

This study has several limitations. Despite our attempts to contact the patient by phone, we were unable to obtain long-term follow-up radiographs to provide further insight for the readership. Instead, Fig. 8 presents a lateral

Fig. 8. Lateral radiograph of a different 85-year-old female patient taken 20 months postoperatively. The patient was treated with an iliac cortico-cancellous structural bone graft and showed favorable outcomes. The grafted cortical bone was soundly coaptated (circle) to both the proximal and distal segments of the ulna, as demonstrated in the image.

radiograph from a different 85-year-old female patient who underwent a similar procedure using an iliac cortico-cancellous structural bone graft. The radiograph, taken 20 months postoperatively, demonstrates a similarly favorable outcome.

Although osteosynthesis resulted in favorable clinical outcomes, it remains unclear which type of bone graft—cortical or cancellous—offers superior results, as well as optimizing fixation plate application for sufficient stability, remains uncertain. These limitations underscore the need for further clinical experience and research in the future.

In Table 2, we summarize the treatment guidelines for AUFs based on previously published literature and our own limited clinical experience.

Conclusions

AUFs represent a rare but clinically significant complication of long-term antiresorptive therapy. Given their distinct pathophysiology and mechanical environment

Table 2. Summary of the guideline for atypical ulnar fracture treatment

Category	Key point		
evaluation	Review medical history for use of antiresorptive agents		
	Conduct a laboratory evaluation of bone health profile		
	Use radiologic studies (X-ray and bone scan) to detect other atypical lesions, including subtrochanteric areas		
	Discontinue antiresorptive agents preoperatively		
	Perform a DEXA scan to evaluate current bone density status		
أمما أممانه أما	Focus on improving biological healing and fixation stability during osteosynthesis		
	Debate remains regarding extent of debridement/resection and type of bone graft (cortical vs. cancellous)		
	Decision algorithm for graft type: use cortical for large segmental defects with mechanical stability; cancellous for enhancing osteogenesis in smaller gaps		
	Robust fixation recommended: long plate, dual plating, or combined plate and nail techniques		
management	Recommend PTH therapy; calcium and vitamin D supplementation (despite inconclusive evidence)		
	Coordinate with medical team for follow-up medical management		
	More protection using immobilization and a longer bone union period are required, making close outpatient follow-up imperative		

 $\label{eq:definition} \mbox{DEXA, dual-energy X-ray absorptiometry; PTH, parathyroid hormone.}$

compared to typical ulnar fractures, successful management requires both biological and mechanical optimization. Surgical strategies emphasizing complete resection of unhealthy sclerotic margins, autologous bone grafting either cortical or cancellous depending on the defect characteristics and rigid plate fixation with long and double plating yielded favorable outcomes in our bilateral AUF case. Further accumulation of clinical cases and prospective research are necessary to refine diagnostic criteria and optimize therapeutic approaches for AUFs.

Article Information

Author contributions

Conceptualization: CHO, HTK, JKL. Data curation: CHO, HTK. Methodology: JKL. Investigation: CHO, HTK. Resources: HTK. Validation: HTK. Visualization: CHO, JKL. Writing-original draft: CHO. Writing-review & editing: HTK, JKL. All authors read and approved the final manuscript.

Conflicts of interest

Jun-Ku Lee is an editorial board member of the journal but was not involved in the peer reviewer selection, evaluation, or decision process of this article. No other potential conflicts of interest relevant to this article were reported.

Funding

None.

Data availability

Not applicable.

References

- Stathopoulos KD, Kosmidis C, Lyritis GP. Atypical fractures of the femur and ulna and complications of fracture healing in a 76-year-old woman with Sjögren's syndrome. J Musculoskelet Neuronal Interact 2011;11:208-11.
- 2. Abe K, Kimura H, Yamamoto N, et al. Treatment strategy for atypical ulnar fracture due to severely suppressed bone turnover caused by long-term bisphosphonate therapy: a case report and literature review. BMC Musculoskelet Disord 2020;21:802.
- **3.** Tan SH, Saseendar S, Tan BH, Pawaskar A, Kumar VP. Ulnar fractures with bisphosphonate therapy: a systematic review of published case reports. Osteoporos Int 2015;26:421-9.
- **4.** Ohta S, Ikeguchi R, Noguchi T, Kaizawa Y, Matsuda S. Intractable fractures of the bilateral proximal ulnae after 8 years of zoledronate treatment for breast cancer bone metastasis. J Hand Surg Am 2022;47:393.e1-77.
- 5. Asano Y, Tajiri K, Yagishita S, Nakanishi H, Ishii T. Bilateral atypical ulnar fractures occurring after long-term treatment with bisphosphonate for 7 years and with teriparatide for 2 years: a case report. Osteoporos Int 2020;31:2473-6.
- 6. Hirokawa T, Zukawa M, Makino H, Osada R, Kawaguchi Y. Therapeutic strategy for atypical ulnar fracture in long use of bisphosphonate: a systematic review. J Orthop Sci 2024;29:880-4.

- 7. Cha SM, Shin HD, Ahn BK. Revision osteosynthesis after primary treatment of atypical ulnar fractures associated with bisphosphonate usage: nonunion after ordinary open reduction and internal fixation. Arch Orthop Trauma Surg 2021;141:1855-62.
- **8.** Schilcher J, Koeppen V, Aspenberg P, Michaëlsson K. Risk of atypical femoral fracture during and after bisphosphonate use. Acta Orthop 2015;86:100-7.
- 9. Meier RP, Perneger TV, Stern R, Rizzoli R, Peter RE. Increasing occurrence of atypical femoral fractures associated with bisphosphonate use. Arch Intern Med 2012;172:930-6.
- Dell RM, Adams AL, Greene DF, et al. Incidence of atypical nontraumatic diaphyseal fractures of the femur. J Bone Miner Res 2012;27:2544-50.
- Giusti A, Hamdy NA, Papapoulos SE. Atypical fractures of the femur and bisphosphonate therapy: a systematic review of case/case series studies. Bone 2010;47:169-80.
- 12. Tjhia CK, Odvina CV, Rao DS, Stover SM, Wang X, Fyhrie DP. Mechanical property and tissue mineral density differences among severely suppressed bone turnover (SSBT) patients, osteoporotic patients, and normal subjects. Bone 2011;49:1279-89.
- Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CY. Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab 2005;90:1294-301.
- Yam MG, Kwek EB. A case of bilateral atypical ulnar fractures with bisphosphonate therapy in a walking aided elderly. Ann Acad Med Singap 2017;46:351-3.
- Skahen JR, Palmer AK, Werner FW, Fortino MD. The interosseous membrane of the forearm. anatomy and function. J Hand Surg Am 1997;22:981-5.
- 16. Okita S, Saito T, Yamamoto N, et al, Five cases of atypical ulnar fractures associated with long-term bisphosphonate use. an anatomical and mechanical analysis using a finite element model. J Orthop Sci 2024;29:449-53.
- Noda K, Goto A, Murase T, Sugamoto K, Yoshikawa H, Moritomo H. Interosseous membrane of the forearm. an anatomical study of ligament attachment locations. J Hand Surg Am 2009;34:415-22.
- **18.** Tubbs RS, O'Neil JT, Key CD, et al. The oblique cord of the forearm in man. Clin Anat 2007;20:411-5.
- Fujita M. An anatomical study on the interosseous membrane of the forearm. Nihon Seikeigeka Gakkai Zasshi

- 1995:69:938-50.
- 20. Shane E, Burr D, Abrahamsen B, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 2014;29:1-23.
- 21. Heo YM, Park SE, Cha SM, Shin HD, Choi JK. Diagnostic criteria and treatment of atypical ulnar fractures associated with prolonged bisphosphonate therapy: multicenter case analysis. J Hand Surg Am 2022;47:901.
- 22. Reid IR, Billington EO. Drug therapy for osteoporosis in older adults. Lancet 2022;399:1080-92.
- 23. Carvalho NN, Voss LA, Almeida MO, Salgado CL, Bandeira F. Atypical femoral fractures during prolonged use of bisphosphonates: short-term responses to strontium ranelate and teriparatide. J Clin Endocrinol Metab 2011;96:2675-80.
- 24. Casado-Díaz A, Dorado G, Giner M, et al. Proof of concept on functionality improvement of mesenchymal stem-cells, in postmenopausal osteoporotic women treated with teriparatide (PTH1-34), after suffering atypical fractures. Calcif Tissue Int 2019;104:631-40.
- Feron JM, Cambon-Binder A. Medication management after intramedullary nailing of atypical fractures. Injury 2017;48 Suppl 1:S15-7.
- **26.** Anderson PA, Kates SL, Watts NB. Update on atypical femoral fractures. J Bone Joint Surg Am 2024;106:1819-28.
- 27. Yamamoto N, Yamauchi M, Noda T, Matsui Y, Ozaki T.. Atypical ulnar fracture with atypical femoral fracture: a case report and literature review. J Orthop Sci 2022;27:1354-8.
- 28. Okubo N, Yoshida T, Ohara M, Takahashi K. Atypical ulnar fracture in an older woman with osteoporosis with a five-year history of denosumab treatment: a case report. J Hand Surg Asian Pac Vol 2022;27:928-32.
- **29.** Binkley N, Goel H, Shives E, Krueger D, Hare K. A probable atypical ulnar fracture in a man receiving denosumab. Bone 2021;143:115726.
- **30.** Bjorgul K, Reigstad A. Atypical fracture of the ulna associated with alendronate use. Acta Orthop 2011;82:761-3.
- 31. Ito H, Miyakoshi N, Kasukawa Y, et al. Treatment of atypical fracture of the ulnar diaphysis by open reduction and internal fixation with teriparatide. Case Rep Orthop 2019;2019;9103412.
- **32.** Osada R, Zukawa M, Kimura T. Atypical ulnar fracture associated with long-term bisphosphonate use. J Orthop Sci 2015;20:1132-5.

Biomechanical finite element analysis of a femoral neck system fixation construct for femur neck fractures and clinical implications

Hoon-Sang Sohn, MD, PhD¹, Se-Lin Jeong, BA², Gu-Hee Jung, MD, PhD^{2,3}

Background: This study assessed the structural/mechanical stability of fixation constructs with a femoral neck system (FNS) via finite element analysis after simulating femoral neck fractures and explored the clinical implications.

Methods: We simulated subcapital, transcervical, basicervical, and vertical fracture models using a right femur (SAWBONES) and imported the implant model of FNS to Ansys (Ansys 19.0, Ansys Inc.) to place the implant in the optimal position. The distal end of the femur model was completely fixed and was abducted 7°. The force vector was set laterally at an angle of 3° and posteriorly at an angle of 15° in the vertical ground. The analysis was conducted using Ansys software with the von Mises stress (VMS) in megapascals (MPa).

Results: The maximum VMS of the fracture site was 67.01 MPa for a subcapital, 68.56 MPa for a transcervical, 344.54 MPa for a basicervical, and 130.59 MPa for a vertical model. The maximum VMS of FNS was 840.34 MPa for a subcapital, 637.37 MPa for a transcervical, 464.07 MPa for a basicervical, and 421.01 MPa for a vertical model. The stress distribution of basicervical and vertical fractures differed significantly, and the basicervical fracture had higher VMS at the bone, implant, and fracture sites.

Conclusions: FNS fixation should be performed with consideration the osseous anchorage in the femoral head, and this technique might be appropriate for vertical fractures. Regarding the VMS at the fracture site, FNS might be applied cautiously only to basicervical fractures with anatomical reduction without a gap or comminution.

Level of evidence: IV.

Keywords: Proximal femoral fractures; Fracture fixation; Finite element analysis

Introduction

Considering that fracture site and orientation affect management modality and fixation construct in the treatment of young femoral neck fracture (FNF), trauma surgeons need convenient and reproducible standards to help them choose the best surgical implant and predict fracture-related complications [1,2]. Of FNFs in young adults, vertically oriented FNF (Pauwels type III) should be distinguished, because the high shearing force could explain the relatively high rate of nonunion and fixation failure [3-7]. It has been well established that anatomic reduction and choice of optimal implant are crucial for minimizing complications of FNF in young adults.

Original Article

Received: February 18, 2025 Revised: April 14, 2025 Accepted: April 17, 2025

Correspondence to:

Gu-Hee Jung, MD, PhD
Department of Orthopedic Surgery,
Gyeongsang National University
Changwon Hospital, 11 Samjeongja-ro,
Seongsan-gu, Changwon 51472, Korea
Tel: +82-55-214-3822
Email: jyujin2001@hotmail.com

© 2025 The Korean Orthopaedic Trauma Association.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

¹Department of Orthopedic Surgery, Yonsei University Wonju College of Medicine, Wonju, Korea

²Institute of Health Sciences (Medical ICT Convergence Research Center), Gyeongsang National University College of Medicine, Jinju, Korea

³Department of Orthopedic Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, Korea

Although the reduction adequacy was dependent on the surgeon's experience and tactics, the implant choice is based on preoperative planning with an accurate assessment of fracture morphology, especially in high-energy injuries. These fractures are often stabilized with multiple cannulated screws (MCS), dynamic hip screws (DHS) with or without an anti-rotation screw [8-11].

Recently, the new minimally invasive implant femoral neck system (FNS; DePuySynthes) developed for dynamic fixation of FNFs. Owing to the advantages of angular stability with a minimally invasive surgical technique [12], the indications for FNS have been significantly broadened and have led to an increase in the use for various FNFs, although there is little evidence for clinical outcomes. Concerning the FNS implantation for highly unstable FNSs, there have been two main types of research: (1) retrospective analysis of clinical results and (2) biomechanical investigation enhancing the structural-mechanical stability [10,13-15]. However, few studies have measured biomechanical behavior according to the patterns of FNFs under the same conditions. Hence, by using the widely accepted finite element (FE) method [16-18], we would demonstrate the difference in structural-mechanical stability according to the patterns of FNFs and introduce the clinical implications of FNS.

Methods

Development of the FE Model

This study did not need approval by the Institutional Review Board, because its three-dimensional (3D) computer-aided design (CAD) model was from the commercially available high-resolution file of a right femur model: the standard fourth-generation composite bones (SAW-BONES). Given the commercially available FNS, we modeled the 3D implant at actual size by using the 3D CAD software of SolidWorks 2019 (Dassault Systems SolidWorks Co.). Both the 3D femur and FNS were imported to Solid-

Works for further polishing and were meshed using 1.0-mm tetrahedral mesh (Table 1).

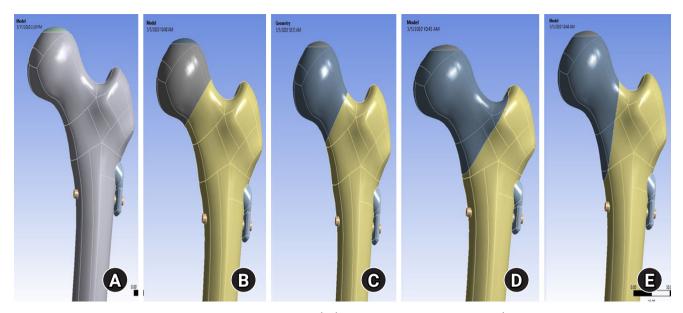
The geometry of FE models corresponded to the definition of FNFs, including the subcapital, transcervical, basicervical [19], and vertical fractures [7]. The neck fractures were simulated in 3D CAD software of SolidWorks. Then, the 3D models of implant and femur were imported to the Ansys software (Ansys 19.0, Ansys Inc.) for placing the FNS in the optimal position and subsequently establishing the FE model by remeshing (Fig. 1). For FE analysis, the principles of model construction were uniform, as follows: (1) The plate with one hole made contact with the femoral diaphysis; (2) The trajectory of the screws was chosen based on the locking hole of the plate so that they protruded over 2 mm on the opposite side; (3) The contact between plate and screw was simulated as the bonding with virtual mechanical rigid links to mimic the locking head screw mechanism; (4) The bolt (screw) was inserted through the femoral head center or center-inferior at less than 10 mm in any direction from the outer boundary of the femoral head in concordance with the well-accepted technique of the manufacturer's instructions [20].

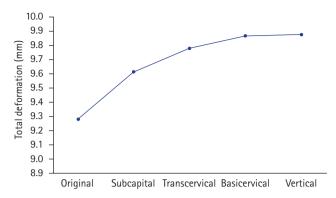
Material Properties, Boundary Conditions, and Stress Analysis of Fixation Constructs

The material properties for the synthetic femur were assigned according to the manufacturer's specification for the fourth-generation SAWBONES (Table 1). We set the Young's modulus of the cortical bone at 7,200 megapascal (MPa) with a Poisson's ratio (y) of 0.350 and set it for the cancellous bone at 135 MPa with Poisson ratio (y) of 0.225. The density of the cortical bone was 1.5 g/cm³, and that of the cancellous bone was 0.2 g/cm [21,22]. All the metal of the implants was assumed to have the elastic, isotropic and homogeneous properties of titanium alloy in this study. The Young's modulus of the titanium alloy was set at 96,000 MPa with a Poisson's ratio (y) of 0.36 and the density of the implant was 4.62 g/cm [21].

Table 1. Material properties of bone and implant

Material	Density (g/cm³)	Elastic modulus (megapascal)	Poisson's ratio
Cortical bone	1.5	7,200	0.35
Cancellous bone	0.2	135	0.225
Titanium alloy (fixation implant)	4.62	96,000	0.36




Fig. 1. The neck fractures were simulated in three-dimensional (3D) computer-aided design software (SolidWorks 2019, Dassault Systems SolidWorks Co.). Then, the 3D models of the implant and femur were imported to Ansys software (Ansys 19.0, Ansys Inc.) in order to place the femoral neck fracture in the optimal position. (A) No fracture. (B) Subcapital F. (C) Transcervical F. (D) Basicervical F. (E) Vertical F.

The distal end of the femur model was completely fixed, and the loads of 1950 N, equivalent to tripling the body weight of the subject (65 kg), were applied to the center of the femoral head [23]. To mimic the normally physiologic alignment of lower limbs in the standing position, each assembly model was abducted 7° in the vertical ground (Fig. 1). The force vector was set laterally at an angle of 3° and posteriorly at 15°, because the femoral neck was slightly anteverted in relation to the position of the femoral condyles in the horizontal or transverse plane [24]. The 3D shear stress on the X axis was 98.57 N, 1947.3 N on the Y axis, and 26.4 N on the Z axis. We assumed that the implant was in direct contact with the bone (Table 1). According to the well-established and approved test contact setup method described in previous studies, a binding contact was formed between the internal fixation screw and the femur [25]. We could not evaluate the torsional results in these models. We assumed that the implant had direct contact with the bone and did the analysis using commercial FE software of Ansys with von Mises stress (VMS) in MPa, fracture displacement of the implant relative to the bone (as a measure of relative fixation strength).

Results

According to the displacement of the assembly model, the maximum displacement occurs at the upper part of the femoral head, as shown in Fig. 2. The displacements of the proximal femur were 9.28 mm for the no-fracture model, 9.61 mm for the subcapital fracture, 9.77 mm for the transcervical fracture, 9.86 mm for the basicervical fracture, and 9.87 mm for the vertical fracture. The VMS distributions on bone were assessed and are shown in Fig. 3. Compared with the no-fracture model, the subcapital and transcervical fracture had a similar distribution of VMS, which was the medial exit point of the screw through the plate (Fig. 4). The vertical fracture was the lateral insertion point of the plate. However, for the basicervical fracture, the max point of VMS was different from that in the other models and was in the posteromedial side of the fracture site (Fig. 5).


The max VMS of the fracture site was 67.01 MPa for the subcapital fracture, 68.56 MPa for the transcervical fracture, 344.54 MPa for the basicervical fracture, and 130.59 MPa for the vertical fracture (Fig. 6). For the stress distribution on the FNS, there were some differences based on the fracture morphologies. The max VMS of the implant was 840.34 MPa for the subcapital fracture, 637.37 MPa for the transcervical fracture, 464.07 MPa for the basicervical

Fig. 2. According to the displacement of the assembly model, the maximum displacement occurs at the upper part of the femoral head. The displacement was the largest in basicervical and vertical fractures.

fracture, and 421.01 MPa for the vertical fracture (Fig. 6). For the stress distribution on the implant, the max points of VMS were the bolt around fracture site in all models and were in the junction site between the fracture site and the barrel of the plate (Fig. 7). There were two kinds of stress distribution of the bolt according to the fracture morphologies. The max point of the subcapital and transcervical fractures was the upper junction site, like that in the no-fracture model, and was the lower junction site for the basicervical and vertical fractures (Fig. 8).

Considering the max VMS distributions on the assembly models, the max VMS of the implant corresponded to the value of the entire fixation construct; so, the FNS mainly

Fig. 3. The von Mises stress (VMS) distributions on bone. Compared with the no-fracture model, the subcapital and transcervical fractures had a similar VMS distribution, which was the medial exit point of the screw through the plate. However, for the basicervical and vertical fractures, the max point of VMS was different from that in other models and was located in the medial side of the fracture site. (A) No fracture. (B) Subcapital F. (C) Transcervical F. (E) Vertical F.

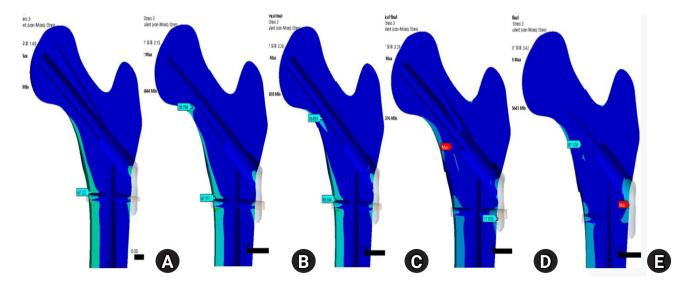


Fig. 4. Compared with the no-fracture model, the subcapital and transcervical fractures had a similar von Mises stress distribution, which was the medial exit point of the screw through the plate. (A) No fracture. (B) Subcapital F. (C) Transcervical F. (D) Basicervical F. (E) Vertical F.

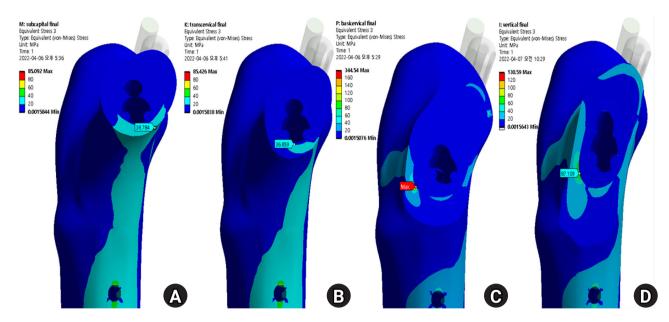
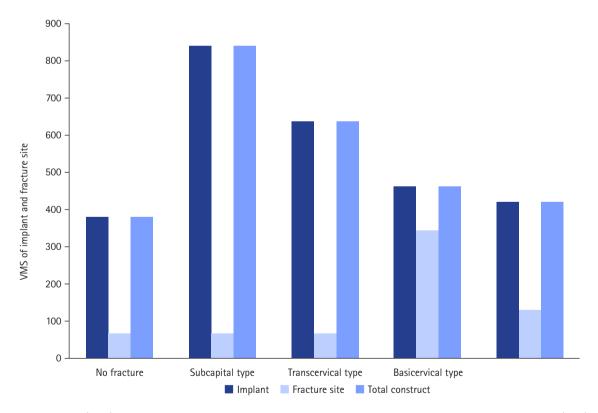



Fig. 5. The stress distribution of the fracture site was notably increased in the basicervical fracture, for which the point with the maximum von Mises stress was different from that in other models and was located in the posteroinferior area of the fracture site. (A) Subcapital F. (B) Transcervical F. (C) Basicervical F. (D) Vertical F.

Fig. 6. von Mises stress (VMS) of implant and fracture site. The maximum VMS of the fracture site was 67.01 megapascal (MPa) for the subcapital fracture, 68.56 MPa for the transcervical fracture, 344.54 MPa for the basicervical fracture, and 130.59 MPa for the vertical fracture.

served for load-bearing, because the stress value of the fracture site was small except for the basicervical fracture. In terms of the load-bearing role, the implant's VMS was the highest in the subcapital fracture and lowest in the vertical fracture. For the basicervical and vertical fractures, the stress distribution between the implant and fracture sites

differed significantly; the basicervical fracture had higher VMS in the bone, implant, and fracture sites (Fig. 9).

Discussion

Although controversy remains regarding optimal fixation

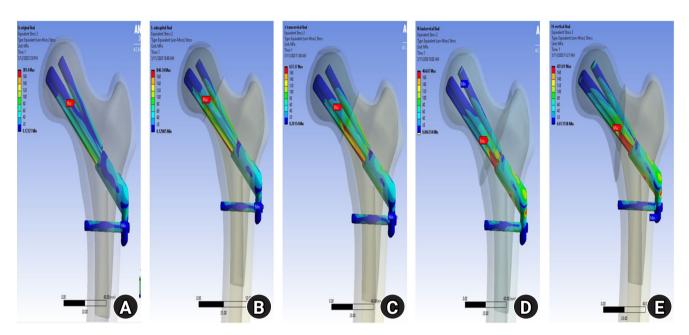
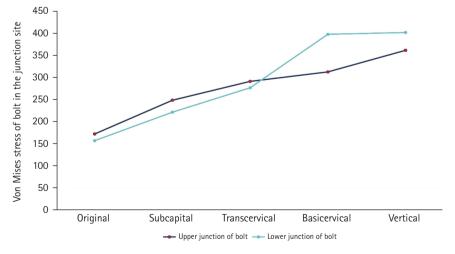



Fig. 7. For the stress distribution on the implant, the points with the maximum von Mises stress were the bolt around the fracture site in all models; it was located in the junction between the fracture site and the barrel of the plate. (A) No fracture. (B) Subcapital F. (C) Transcervical F. (D) Basicervical F. (E) Vertical F.

Fig. 8. von Mises stress of bolt in the junction site. There were two kinds of stress distribution of the bolt according to the fracture morphologies. The maximum point of the subcapital and transcervical fractures was the upper junction site, as in the no-fracture model, and was the lower junction site for the basicervical and vertical fractures.

techniques and constructs, strategies for achieving optimal stability are crucial to minimizing the complications and sequelae in the management of high-energy FNFs. We conducted the FE analysis to assess the structural-mechanical stability of FNS in the nonosteoporotic FNFs. This computational analysis enabled us to arrive at several interesting findings. First, the max VMS of FNS corresponded to the value of the entire fixation construct and mainly functioned as the load-bearing implant. Second, for the subcapital and transcervical fractures, the stress distribution mainly concentrated on the implant and thus, the proximal osseous anchoring of the bolt might be necessary for maintaining rotational and angular stability. Third, the max VMS point of the fracture site was located on the posteroinferior side of the fracture site in the basicervical and vertical fractures. The VMS of the basicervical fracture was significantly larger than that of vertical fracture.

Although various implants exist for the operative fixation

of FNFs, the use of FNS has been increased because of its biomechanical advantages with minimally invasiveness [12]. Thus, the surgical complications, including the cutout, nonunion, and femoral head necrosis, inevitably have occurred [9,26]. To our best knowledge, there was no clinical report of FNS complications according to the fracture morphologies or Pauwels angle, although several studies have reported the comparative results of FNS and MCS [8-10]. Thus, considering these limitations of clinical case studies, we aimed to investigate the biomechanical behaviors of FNS based on the traditional classification of FNFs. Although it has been well established as most unstable fracture types, the VMS distribution of vertical fracture was similar to the no-fracture model but was much different from the basicervical fracture. The stress distribution of the fracture site was notably increased in the basicervical fracture. Thus, if the FNS fixation is considered for a basicervical fracture, the related factors of the variant types

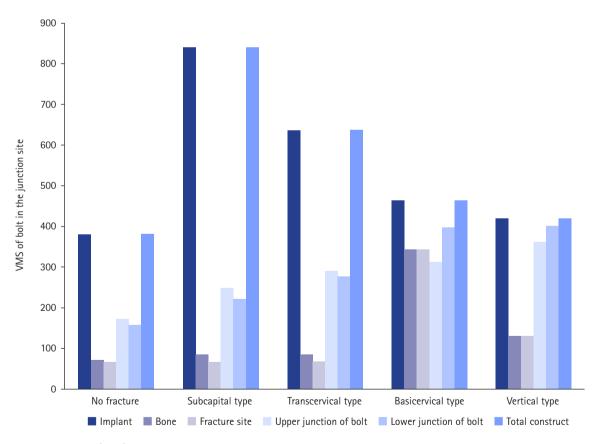


Fig. 9. von Mises stress (VMS) of bolt in the junction site in terms of the load-bearing role, the implant's VMS was the highest in the subcapital fracture and lowest in the vertical fracture. Comparing the basicervical and vertical fractures, the stress distribution between the implant and fracture sites differed significantly, and the basicervical fracture had higher VMS in the bone, implant, and fracture sites.

[27,28] and reduction adequacy, which are anatomically cortical contact, posteroinferior comminution, and fracture gap, should be verified intraoperatively before the definitive fixation. Because the vertically oriented fracture may contribute to the high failure rate in Pauwels' grade III fractures in healthy young patient, the DHS with or without a de-rotational screw has been regarded as a superior fixation construct [4,29]. Before this investigation to identify the optimal indications, we anticipated that FNS may not be appropriate for vertical fractures, because it is a smaller implant of plate and lag screw (bolt) than is DHS. Although we did not analyze the direct comparison between FNS and DHS, our results demonstrated that the stress distribution of the fixation construct was concentrated on the implant and not the fracture site.

When compared between vertical fracture and basicervical fracture, the max VMS value of the implant was not significantly different, but it was much different at the fracture site. Thus, despite these prejudices, we think the vertical fracture might be more suitable for FNS fixation than the basicervical fracture. Furthermore, considering that 96% of vertical neck fractures had major comminution, which was mainly located inferiorly and posteriorly [30], the FNS for vertical fractures might be an appropriate implant for vertical fracture based on our results, which showed the lower stress distribution on the fracture site. Additionally, compared with the no-fracture model, the VMS distribution of the vertical fracture was most similar in the fracture site and implant. For the subcapital fracture, the stress distribution mainly concentrated on the implant, and the max points of VMS were the bolt around the fracture site. Based on this result, authors should assume that the anchoring between the proximal bolt and the cancellous bone of the femoral head is maximized. In the personal communication between orthopedic trauma surgeons, we found that fixation failure of FNS was not uncommon, although the critical factors could not be analyzed. However, this FE analysis seems to show that the proximal osseous anchoring of the bolt might be essential for maintaining rotational and angular stability. The subcapital fracture might be cautiously applied because the femoral head fragment had a short working length. Adding an anti-rotational screw to the FNS might increase the proximal anchoring and angular stability, so further research on this topic will be performed in the future (Fig. 10).

Despite interesting findings, this computational simulation study has several fundamental limitations. First, our fracture models were very simplified for simulating the perfect reduction without gap and comminution between fragments. Second, our results had descriptive characteristics because we used not patient-specific computed tomography-based bone models but synthetic bone models, which were simulated using a normal nonosteoporotic femur without considering the heterogeneous properties of real human bone. Third, the fracture impact by controlled sliding of the lag screw/blade could not be simulated, because of technical difficulties. Our results just showed the initial strength of the fixation construct. Nevertheless, our computational analysis could be assessed on structural-mechanical strength and the VMS distribution of the fracture site and the implant under the same conditions. Although the implant should be chosen in terms of the extent of displacement, fracture configuration, physiological age, bone quality, and other factors, our results might be able to directly suggest technical relevance to maximize the structural strength of the FNS fixation construct for FNFs. By utilizing previous research experience, we will conduct a comparative study of other fixation constructs, including the DHS, MCS, and intramedullary nails, in the future. Additionally, further research is needed to determine what makes the difference between basicervical fracture and vertical fracture fixed with FNS.

Conclusions

Based on the stress distribution of fracture sites and implants, the FNS fixation construct might be appropriate for transcervical and vertical fractures. For a basicervical fracture, an FNS might be applied in the anatomically reduced fracture without gap and comminution. For subcapital fractures, considering the high-stress distribution of the proximal bolt around fracture site, there are two important things; (1) The osseous anchorage of femoral head might be essential to maintain the structure-mechanical stability. (2) The working length of the bolt in the femoral head is verified preoperatively.

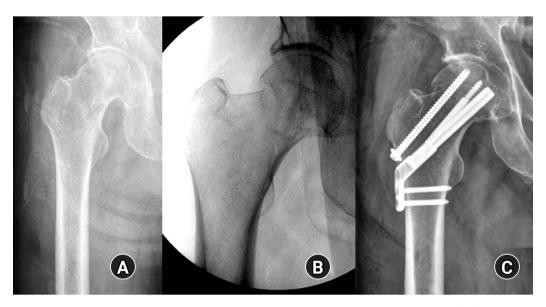


Fig. 10. A 54-year-old male patient sustained a femoral neck fracture caused by a fall from a 2-m height. (A, B) Plain radiographs and an intraoperative fluoroscopic image show the subcapital fracture. (C) The femoral neck system anti-rotational screw was applied to increase the anchoring and stability of the femoral head fragment.

Article Information

Author contributions

Data curation: SLJ. Formal analysis: HSS. Methodology: HSS, SLJ. Funding acquisition: GHJ. Supervision: GHJ. Visualization: SLJ. Writing-original draft: HSS, GHJ. Writing-review & editing: GHJ. All authors read and approved the final manuscript.

Conflicts of interest

Gu-Hee Jung is an editorial board member of the journal but was not involved in the peer reviewer selection, evaluation, or decision process of this article. No other potential conflicts of interest relevant to this article were reported.

Funding

This research was supported by the grant from Institute of Medical Science of Gyeongsang National University, 2021.

Data availability

Contact the corresponding author for data availability.

References

1. Shen M, Wang C, Chen H, Rui YF, Zhao S. An update on the

Pauwels classification. J Orthop Surg Res 2016;11:161.

- Kong GM, Kwak JM, Jung GH. Eliminating projection error of measuring Pauwels' angle in the femur neck fractures by CT plane manipulation. Orthop Traumatol Surg Res 2020; 106:607-11.
- 3. Enocson A, Lapidus LJ. The vertical hip fracture: a treatment challenge. A cohort study with an up to 9 year follow-up of 137 consecutive hips treated with sliding hip screw and antirotation screw. BMC Musculoskelet Disord 2012;13:171.
- **4.** Liporace F, Gaines R, Collinge C, Haidukewych GJ. Results of internal fixation of Pauwels type-3 vertical femoral neck fractures. J Bone Joint Surg Am 2008;90:1654-9.
- Parker MJ. Results of internal fixation of Pauwels type-3 vertical femoral neck fractures. J Bone Joint Surg Am 2009;91:490-
- 6. Aminian A, Gao F, Fedoriw WW, Zhang LQ, Kalainov DM, Merk BR. Vertically oriented femoral neck fractures: mechanical analysis of four fixation techniques. J Orthop Trauma 2007;21:544-8.
- Johnson JP, Borenstein TR, Waryasz GR, et al. Vertically oriented femoral neck fractures: a biomechanical comparison of 3 fixation constructs. J Orthop Trauma 2017;31:363-8.
- **8.** Tang Y, Zhang Z, Wang L, Xiong W, Fang Q, Wang G. Femoral neck system versus inverted cannulated cancellous screw for the treatment of femoral neck fractures in adults: a prelimi-

- nary comparative study. J Orthop Surg Res 2021;16:504.
- He C, Lu Y, Wang Q, et al. Comparison of the clinical efficacy
 of a femoral neck system versus cannulated screws in the
 treatment of femoral neck fracture in young adults. BMC
 Musculoskelet Disord 2021;22:994.
- Zhou XQ, Li ZQ, Xu RJ, et al. Comparison of early clinical results for femoral neck system and cannulated screws in the treatment of unstable femoral neck fractures. Orthop Surg 2021;13:1802-9.
- 11. Chan DS. Femoral neck fractures in young patients: state of the art. J Orthop Trauma 2019;33 Suppl 1:S7-11.
- 12. Stoffel K, Zderic I, Gras F, et al. Biomechanical evaluation of the femoral neck system in unstable Pauwels III femoral neck fractures: a comparison with the dynamic hip screw and cannulated screws. J Orthop Trauma 2017;31:131-7.
- Kuang X, Jian G, Xie D, Chen X, Liu H. Choose the appropriate implantation position of the Femoral Neck System in the femoral neck: a finite-element analysis. Eur J Trauma Emerg Surg 2023;49:1845-53.
- 14. Cha Y, Park S, Jung CH, et al. Additional screw added to the femoral neck system could enhance the stability of Pauwel Type III femoral neck fractures: a finite element analysis. Clin Orthop Surg 2025;17:204-15.
- 15. Nan C, Li Y, Liu Y, Ma L, Ma Z. Biomechanical comparison of femoral neck system and cannulated screws coupled with medial plate for treating Pauwels III femoral neck fractures. Technol Health Care 2023;31:1161-70.
- Kluess D. Finite element analysis in orthopaedic biomechanics. In: Moratal D, ed. Finite element analysis. IntechOpen; 2010. p. 151-70.
- 17. Kwak DK, Kim WH, Lee SJ, Rhyu SH, Jang CY, Yoo JH. Biomechanical comparison of three different intramedullary nails for fixation of unstable basicervical intertrochanteric fractures of the proximal femur: experimental studies. Biomed Res Int 2018:2018:7618079.
- 18. Dragomir-Daescu D, Salas C, Uthamaraj S, Rossman T. Quantitative computed tomography-based finite element analysis predictions of femoral strength and stiffness depend on computed tomography settings. J Biomech 2015;48:153-61.
- Watson ST, Schaller TM, Tanner SL, Adams JD, Jeray KJ. Outcomes of low-energy basicervical proximal femoral fractures treated with cephalomedullary fixation. J Bone Joint Surg

- Am 2016:98:1097-102.
- 20. Stassen RC, Jeuken RM, Boonen B, Meesters B, de Loos ER, van Vugt R. First clinical results of 1-year follow-up of the femoral neck system for internal fixation of femoral neck fractures. Arch Orthop Trauma Surg 2022;142:3755-63.
- **21.** Song Z, Wang Q, Ma T, et al. Failure analysis of primary surgery and therapeutic strategy of revision surgery for complex tibial plateau fractures. J Orthop Surg Res 2019;14:110.
- 22. Bernard S, Schneider J, Varga P, Laugier P, Raum K, Grimal Q. Elasticity-density and viscoelasticity-density relationships at the tibia mid-diaphysis assessed from resonant ultrasound spectroscopy measurements. Biomech Model Mechanobiol 2016;15:97-109.
- 23. Van Houcke J, Schouten A, Steenackers G, Vandermeulen D, Pattyn C, Audenaert EA. Computer-based estimation of the hip joint reaction force and hip flexion angle in three different sitting configurations. Appl Ergon 2017;63:99-105.
- 24. Bergmann G, Deuretzbacher G, Heller M, et al. Hip contact forces and gait patterns from routine activities. J Biomech 2001;34:859-71.
- 25. Sensoz E, Özkal FM, Acar V, Cakir F. Finite element analysis of the impact of screw insertion distal to the trochanter minor on the risk of iatrogenic subtrochanteric fracture. Proc Inst Mech Eng H 2018;232:807-18.
- 26. Hu H, Cheng J, Feng M, Gao Z, Wu J, Lu S. Clinical outcome of femoral neck system versus cannulated compression screws for fixation of femoral neck fracture in younger patients. J Orthop Surg Res 2021;16:370.
- 27. Zhang Y, Hu J, Li X, Qin X. Reverse wedge effect following intramedullary nailing of a basicervical trochanteric fracture variant combined with a mechanically compromised greater trochanter. BMC Musculoskelet Disord 2020;21:195.
- 28. Shoda E, Kitada S, Sasaki Y, et al. Proposal of new classification of femoral trochanteric fracture by three-dimensional computed tomography and relationship to usual plain X-ray classification. J Orthop Surg (Hong Kong) 2017;25:2309499017692700.
- **29.** Ye Y, Hao J, Mauffrey C, Hammerberg EM, Stahel PF, Hak DJ. Optimizing stability in femoral neck fracture fixation. Orthopedics 2015;38:625-30.
- **30.** Collinge CA, Mir H, Reddix R. Fracture morphology of high shear angle "vertical" femoral neck fractures in young adult patients. J Orthop Trauma 2014;28:270-5.

Computational simulation of coracoclavicular screw insertion through the superior distal clavicular plate for clinical applications in Korean cadavers

Hyung-Lae Cho, MD¹, Ji Han Choi, MD¹, Se-Lin Jeong, BS², Gu-Hee Jung, MD, PhD^{2,3}

Background: The study was conducted to determine the practical area for inserting the coracoclavicular (CC) screw through the plate by analyzing three-dimensional (3D) shoulder models featuring virtually implanted, actual-size plates and screws.

Methods: Ninety cadaveric shoulders (41 males and 49 females) underwent continuous 1.0-mm slice computed tomography scans. The data were imported into image-processing software to generate a 3D shoulder model, including the scapula and clavicle. The overlapping area between the clavicle and the horizontal portion of the coracoid process (horizontal portion_CP) was analyzed in the cranial view. A curved pelvic recon plate was virtually placed on the upper surface of the distal clavicle, and an actual-size (3.5 mm) CC screw was inserted through the plate.

Results: The distal clavicle directly overlapped with the horizontal portion_CP in the vertical direction. The overlapping area was sufficient to place the 3.5 mm and 4.5 mm-sized screws. In all shoulder models, the CC screw could be inserted through the plate into the vertical direction, with an average length of 35.5 mm (range, 26.2–62.5 mm; standard deviation, 1.2 mm). In 87 models, the CC screw was inserted through the third hole from the lateral end of the plate. Two models were inserted through the second hole, and one model through the fourth hole.

Conclusions: The upper surface of the clavicle has sufficient overlapping area to place CC screws through the plate in the vertical direction in the corresponding hole. Supplemental CC screw fixation through the plate can be performed without additional or special equipment.

Level of evidence: IV

Keywords: Clavicle; Bone fractures; Coracoclavicular joint; Bone screw; Computer simulation

Introduction

Surgical treatment of distal clavicular fractures can be challenging because of the deforming forces on the proximal clavicle and characteristically small distal fragments that limit quality fixation. Numerous surgical options have been reported. These have yielded varying results, with diverse rates of associated complications and

Original Article

Received: February 19, 2025 Revised: April 17, 2025 Accepted: May 15, 2025

Correspondence to:

Gu-Hee Jung, MD, PhD
Department of Orthopedic Surgery,
Gyeongsang National University
Changwon Hospital, 11 Samjeongja-ro,
Seongsan-gu, Changwon 51472, Korea
Tel: +82-55-214-3822
Email: jyujin2001@hotmail.com

© 2025 The Korean Orthopaedic Trauma Association.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

¹Department of Orthopedic Surgery, Good Samsun Hospital, Busan, Korea

²Department of Orthopedic Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, Korea

³Institute of Medical Sciences, Gyeongsang National University, Jinju, Korea

reoperation [1]. No consensus has been reached on the optimal treatment, especially in Neer type IIB fractures. In managing an unstable distal clavicular fracture, if fixation of the distal fragment is judged to be inadequate, fixation may need to be augmented using a hook plate with fixation under the acromion or supplemental coracoclavicular (CC) fixation combined with the superior distal clavicular plate fixation to prevent superior migration of the proximal fragment [2-4].

Considering the complications related with hook plate fixation for the distal clavicular fractures [5-7], although contentious, supplemental CC fixation combined with the superior plating has more advantages and has been performed using various options when there is insufficient bony purchase in the distal fragment with multiple screws [8-12]. Among the various options, supplemental CC screw fixation through the plate could be performed into the coracoid process without additional implant and instruments whenever needed. However, practically, most surgeons have been concerned with the proper and safe screw trajectory into the coracoid process due to the complicated three-dimensional (3D) anatomy. Although the horizontal portion of coracoid process (horizontal portion_cp) has long been used as the osseous site to achieve the fixation constructs including the CC ligament reconstruction, Bosworth screw fixation, and others, there was no detailed information on safe zone and ideal entry point for screw fixation on the upper surface of clavicle. Therefore, the primary purpose of this computational study was to verify the practical area for inserting the CC screw through the plate and introduce the landmark for clinical application by analyzing the 3D shoulder models featuring virtually implanted, actual size plate and screws.

Methods

3D Reconstruction of Cadaveric Specimens

Digital images of the Korean human body were collected from the Korean Institute of Science and Technology Information and used by agreement. Adult cadavers (n=105) who underwent continuous 1.0 mm slice computed tomography (CT) scans (Pronto) in the supine position were included. None of the cadavers had scapular and clavicular problems based on the analysis of medical records. CT data in Digital Imaging and Communications in Medicine format were imported into Mimics software (Materialise Interactive Medical Image Control System, Materialise) to reconstruct the 3D shoulder models including the scapula and clavicle.

Computational Measurement Methods

After obtaining a 3D shoulder model, the straight distance on the upper surface of clavicle was measured using the distant measuring tool of the Mimics software. The distance averaged 141.6 mm (range, 120.7–163.5 mm; standard deviation [SD], 11.2) (Fig. 1). The transparency mode was

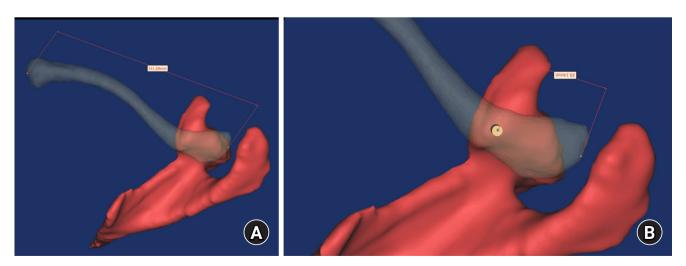
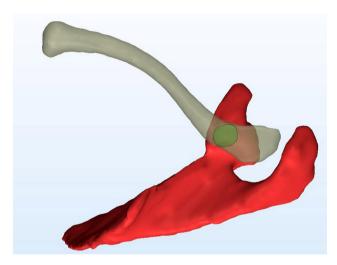


Fig. 1. Mimics software was used to reconstruct 3-dimentional models of the scapula and clavicle, and the transparency mode was controlled to identify the overlapping area between the clavicle and the coracoid process. The straight distance of the clavicle (A) and the distance between the lateral end of the clavicle and the elevated edge of the coracoid process (B) were measured using software.

controlled to differentiate the overlapping area between the upper clavicular surface and the horizontal portion_CP in the cranial view. The straight distance on clavicle between the elevated ridge of horizontal portion_cp and lateral end of clavicle was measured on the upper surface of clavicle and defined as distance_CP (Fig. 1). For the computer-assisted simulation of CC screw fixation through the plate, a virtual 3D model of curved pelvic recon plate (Depuy-Synthes, GmbH) and 3.5 mm cortical screw were created using a 3D sensor (Comet5, Carl Zeiss) in actual size, and placed on the upper surface of distal clavicle using Mimics as with the distal clavicular superior plate fixation (Fig. 2). The ideal position of curved pelvic recon plate (plate) was defined as when the lateral end of plate corresponded to the lateral end of clavicle, the plate was centrally placed on the upper surface of clavicle in the cranial view, and the plate fit well in the anteroposterior (AP) view of the shoulder. After the definitive position of plate was fine-tuned and verified by an experienced surgeon (GHJ), the mutual location of plate holes, horizontal portion_CP and its elevated ridge, and medial border of coracoid process was assessed by controlling the rotation of shoulder model in the cranial and caudal views of the shoulder model. Virtual CC screw fixation through the plate with purchase of the horizontal portion_ CP was performed using the Mimics software with a 3.5 mm cortical screw. The corresponding hole and relationship with the adjacent structure were identified.


Statistical Analysis

IBM SPSS ver. 23.0 (IBM Corp.) was used and statistical significance was set at P<0.05. The univariate and multivariate analyses were performed using logistic regression and linear regression models.

Results

Morphological Analysis of 3D Shoulder

Fifteen cadavers were not enrolled due to poor image quality. The 90 enrolled adult cadavers (41 males and 49 females) had a mean age of 52.9 years (range, 22–60 years; SD, 2.8) and a mean height of 160.5 cm (range, 146–176 cm; SD, 7.8). On the cranial view of the clavicle, the upper surface of the distal clavicle overlapped with the horizontal portion_CP in a crossed direction. The overlapping area was sufficient to place the 3.5 mm and 4.5 mm screws in all models (Fig. 3). After magnifying and freely rotating the 3D model, the elevated ridge was easily identified just medial

Fig. 3. On the cranial view of the clavicle, the upper surface of distal clavicle overlapped with the horizontal portion_coracoid process in a crossed direction. The overlapping area was located around the elevated edge and was sufficient to place the 3.5-mm and 4.5-mm screws.

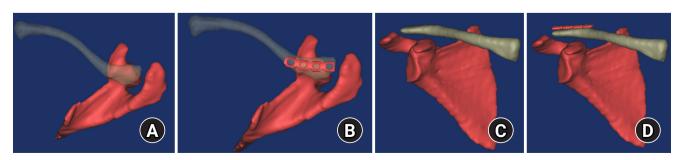


Fig. 2. The optimally positioned pelvic recon curved plate was defined as the central area being on the upper surface of the clavicle in the cranial view (A, B) and well fitted in the anteroposterior view (C, D).

to the ascending portion and was roughly placed in the central area of upper surface of clavicle. Distance $_{\text{CP}}$ averaged 30.6 mm (range, 23.0–42.0 mm; SD, 1.1) and was statistically significant just with the clavicular length (P<0.001).

3D Analysis of Virtually Fixed Shoulder

Compared with the virtually placed plate in the ideal position, on the cranial view, the elevated ridge of 51 models was centrically matched with a central point of plate hole (third hole in 48 models, second hole in two models, and fourth hole in one model) and 39 models, eccentrically with the third hole (Table 1). On an AP view of the shoulder, the intersection point between the imaginary vertical line from the medial border of coracoid process and distal clavicle was always placed in the medial to the third hole

of plate regardless of the degree of horizontal rotation of scapula (Fig. 4). On the lower surface of clavicle, the conoid tubercle was in accord with the possibility of three screws fixation in all models (Fig. 5). The findings clearly demonstrated that the distal clavicular fragment, which corresponded to the medial border of coracoid process and conoid process, had fixability of at least three screws through the plate.

In all shoulder models, the CC screw could be inserted through the plate into the horizontal portion_CP just in the vertical direction. The average length was an average 35.5 mm (range, 26.2–62.5 mm; SD, 2). The CC screw of 87 models was inserted through the third hole from the lateral end of the plate. Two models were through the second hole and through the fourth hole in one model (Fig. 6). Among

Table 1. Differences in distance_cp

Group	No.	Mean	SD	95% CI	Minimum	Maximum
Second hole	2	23.1	0.07	22.41-23.69	23.0	23.1
Third hole	77	30.0	2.17	29.49-30.48	25.0	35.1
Fourth hole	11	36.7	3.04	34.67-38.75	35.2	42.0
Total	90	30.7	3.36	29.95-31.36	23.0	42.0

All measurements were expressed as millimeters (mm).

CP, horizontal portion; SD, standard deviation; CI, confidence interval.

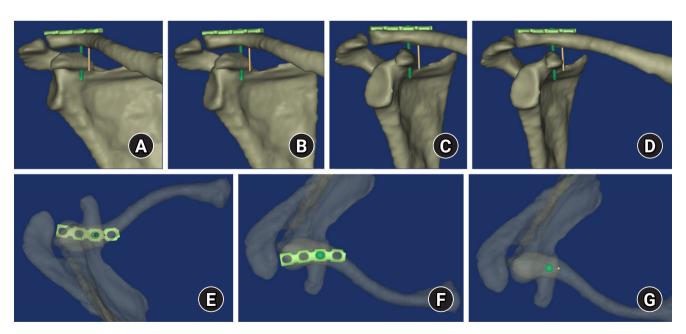


Fig. 4. On an anteroposterior view of the shoulder, the intersection point between the imaginary vertical line from the medial border of coracoid process and distal clavicle was always placed medial to the third hole of the plate regardless of the degree of horizontal rotation of the scapula (A–D). In the cranial view, the imaginary vertical line corresponded to the medial border of the overlapping area (E–G).

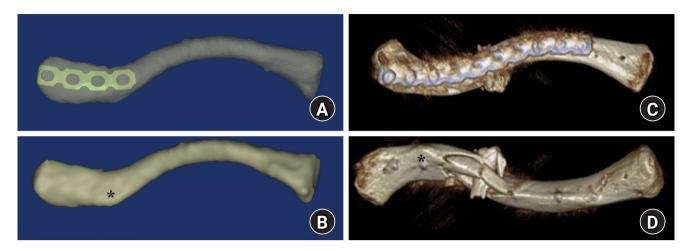
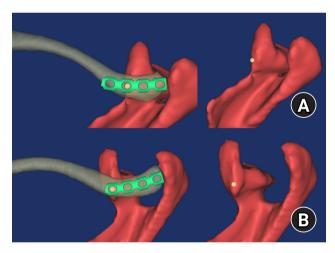



Fig. 5. On a caudal view of the clavicle, the conoid tubercle (asterisk) of the lower surface of the clavicle was in accordance with the possibility of three-screw fixation in all models (A, B). In the comminuted clavicular fracture, which was fixed with a pelvic curved recon plate through the bridge plating technique, a postoperative biplanar 3-dimentional image shows that the lateral fragment lateral to the conoid tubercle (asterisk) could be fixed with three screws (C, D).

Fig. 6. Supplemental coracoclavicular screw fixation through the plate was inserted from the second hole in two models (A) and through the fourth hole in one model (B).

87 models, ten had sufficient overlapping area to place the two vertical and parallel CC screws through the third and fourth holes, which were assigned as the two screws model.

Statistical Correlation

Ten models with two vertical CC screws were exclusively males and displayed statistically significant clavicular length (P<0.001) and distance_CP (P<0.001). Based on the independent-sample T-test, the two groups were statisti-

Table 2. Comparison of two groups

Group	Mean	Standard deviation	T	P-value
Two CCS group	29.96	2.74	6.812	0.000
One CCS group	36.20	2.67		

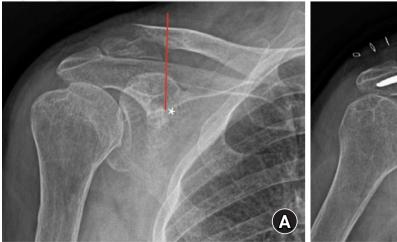
CCS, coracoclavicular screw.

cally different (P<0.001) (Table 2). When the Hosmer-Lemeshow test for goodness of fit was performed with the possibility of two CC screw fixation through the plate, the value of χ^2 was 2.291 (P=0.971). So, the logistic regression model was statistically significant. Among the anatomic variables, the sex (P=0.001), clavicular length (P<0.001), and distance_CP (P<0.001) were statistically significant. By multiple logistic regression model analysis, distance_CP was the only variable with a statistical significance (P<0.001). Receiver operating characteristic curve analysis using the distance_CP revealed an area under the curve of 0.976 (95% confidence interval [CI], 0.946-1.00), which indicated the suitability of distance_CP to predict the possibility of two CC screw placement through plate. The cut-off value of distance__{CP} was 33.6 mm (sensitivity, 0.90; specificity, 0.91). If distance_CP exceeded 33.6 mm, the distal clavicle would likely have sufficient osseous site on the upper clavicular surface for placing the two CC screws inside the horizontal portion_cp.

Discussion

For unstable distal clavicular fractures, the horizontal portion_CP has been used for the osseous site to achieve supplemental fixation constructs including the CC ligament surgeries, CC screw fixation, suture anchor insertion, and others [8-12]. However, these techniques need an additional procedure and implantation techniques for coracoid fixation, and are expensive. If the supplemental fixation is performed just by placing a screw through the plate on the upper surface of the clavicle, this fixation construct might be so convenient and useful in some injuries including poor bone quality and distal clavicular fractures with unexpected comminution [13,14]. Presently, we introduce the practical landmark and safe area for placing the CC screw through the plate and have identified the information for clinical application by virtually placing actual size plate and screws. This 3D anatomy study has a descriptive character, since the non-fractured clavicle of cadavers was analyzed. However, we anticipate that the results have practical value for several reasons: First, to the best of our knowledge, this is the only computational simulation study that has used actual size (3.5 mm) CC screw and plate. Second, the use of Mimics 3D rendering software to allow free 360° rotation with magnification in any plane allowed verification of the overlapping area (safe zone) and direct comparison with the plate holes. Third, it was clearly demonstrated that the CC screw through the plate could be inserted just by vertical direction in all models without additional procedure and special equipment.

Owing to the complications related with hook plate fixation for the distal clavicular fractures [5-7], the precontoured superior locking plating has been performed and good outcomes have been reported [4,15]. But, in practice, some distal clavicular fracture showed the unexpected comminuted fragments when using the open method, and is difficult to achieve sufficient bony purchase [16]. In these circumstances, despite some controversy, supplemental CC fixation combined with plate fixation has been viewed as the most preferred of the various options [17-19]. Unlike other techniques, the supplemental CC screw fixation through the plate can theoretically be performed without additional devices, implants, and instruments, and can be done as the occasion requires. However, we are not aware of anatomical information concerning the ideal entry point


and safe zone. Although Andersen et al. [4] reported the advantages on the CC screw through the plate for distal clavicular fracture, they did not describe the technical reference. Tiefenboeck et al. [14] claimed that the clavicle was drilled by aiming the guide wire centrally towards the base of the coracoid process after manually identifying the coracoid tip. However, our computational simulation clearly found that the direct palpation of coracoid process was not required in this supplemental CC screw fixation technique. Once the clavicle was drilled through the hole of ideally-placed plate and aimed vertically, the CC screw of all models could purchase the osseous site around the elevated ridge of the horizontal portion_CP without an additional step. Even 10 models of male cadavers had sufficient overlapping area to place the two vertical and parallel CC screws through the third and fourth plate holes. Thus, in the unplanned and extemporary circumstance in which the lateral fragment was unexpectedly comminuted and even osteopenia in elderly patients and so did not seem to achieve the sufficient bony purchase, supplemental CC screw fixation through the plate could be undertaken. As well, since the simulated CC screw purchased the osseous site around the elevated ridge in which the trapezoid ligament was attached, anatomic reduction of the CC space might be achieved.

Considering that supplemental CC screw fixation through the plate is usually performed with fluoroscopic guidance, the intraoperative landmark or guideline might be important to verify the safe screw trajectory and prevent the neurovascular complications in practice. Since the scapula is not oriented in a true coronal plane, but lies in a coronal oblique plane, radiographic imaging of the entire coracoid process is difficult [20,21]. Although several radiographic views have been described, none can visualize each coracoid process in its entirety [21]. By our analysis of overlapping area on the cranial view, the practical landmark for CC screw insertion to place the plate centrally on the upper surface of clavicle was identified. AP view of the shoulder revealed the lack of necessity to aim the drill bit towards the base of the coracoid process to achieve the osseous purchase of the elevated ridge, since the CC screw could be inserted through the plate into the horizontal portion_CP in the vertical direction. Once the drill bit was placed just lateral to the ascending portion of coracoid process, there was an obvious screw purchase to the horizontal portion_CP in the AP view, regardless of the patient's position and radiographic projection. Therefore, the imaginary vertical line from the medial border of the coracoid process could be used as the intraoperative guideline without special equipment. If the fracture line is medial to the intersection point between the clavicle and the imaginary vertical line during the fluoroscopic surgery, it would mean the lateral fragment had a fixability of at least three screws. Therefore, the imaginary vertical line might be useful for preoperative planning and the intraoperative procedure. Presently, the CC screw of 87 models (97%) was inserted through the third hole from the lateral end of the plate, which was easily identified by comparison between the plate and the imaginary vertical line. Henceforth, the corresponding hole for CC screw could be verified just by intraoperative fluoroscopic view (Fig. 4). These informative landmarks could be utilized to classify the fracture and choose the implant based on the fixability of distal clavicular fragments (Fig. 7).

Through this study, we found theoretically that 10 models (11%) had sufficient overlapping area to place the two vertical and parallel CC screws through the third and fourth plate holes. If the distance_CP exceeded 33.6 mm, the overlapping area would likely be sufficient osseous site for placement of two CC screws. However, although the distance_CP variable was utilized as preoperative radiologic marker, it could not be identified in the conventional CT scans. Thus, preferentially, the relationship between

distance_CP and the imaginary vertical line had to be verified in the AP view of the shoulder. By free 360° rotations with magnification in any plan of 3D shoulder model, the elevated ridge was easily recognizable as the convex surface just after the ascending portion. Considering that the lateral end of the distal clavicle and elevated ridge of the horizontal portion_CP were conveniently localized during the operation, distance_CP might be of practical value in predicting the possibility of two vertical CC screws and locating the corresponding hole for the supplemental CC screw in the various kinds of precontoured distal clavicular plate (Fig. 8).

This computational simulation study has several fundamental limitations. First, the indication of CC screw fixation through the plate was not clear, because the biomechanical and clinical advantages on CC screw fixation has not been proven. Second, considering the variables were manually measured, interobserver errors could occur. Third, owing to the small number of enrolled clavicles, our results cannot be generalized to all Asian people. Nevertheless, the findings indicate that supplemental CC screw fixation through the plate is an entirely safe and practically easy way to be placed without additional procedure and special equipment. Further studies on the clinical outcomes of supplemental CC screw through the plate and comparative study with other implant to augment fixation in distal clavicular fracture should be conducted in future.

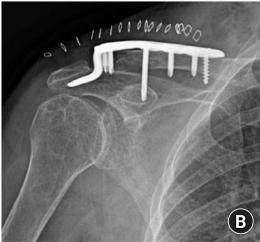


Fig. 7. An imaginary vertical line (asterisk) of preoperative radiograph could be utilized to classify the fracture and choose the implant based on the fixability of distal clavicular fragments (A, B).

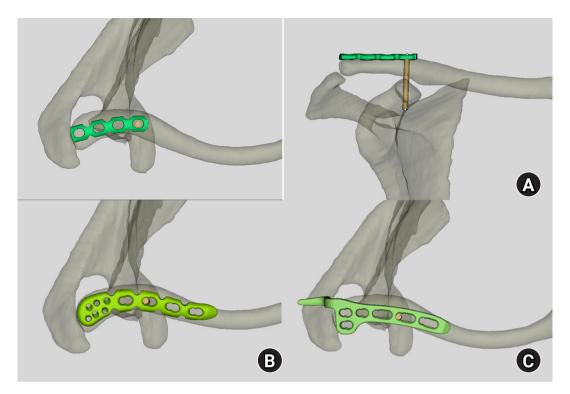


Fig. 8. Considering the convex surface of horizontal portion_coracoid process and imaginary vertical line, the corresponding hole for the supplemental coracoclavicular screw through the plate could be fixed in the various kinds of precontoured distal clavicular plate: (A) pelvic curved recon plate, (B) precontoured distal clavicular plate, and (C) distal clavicular hook plate.

Conclusions

This is the only study verifying the safe zone/trajectory, intraoperative landmark of vertical line, fixability of three screws on the distal clavicular fragment by simulating the supplemental CC screw through the plate in actual size. Considering the topographic features of overlapping area between the clavicle and horizonal portion, supplemental CC screw insertion through the plate could be placed safely over the horizontal portion_CP in the vertical direction in the corresponding hole without additional preparation, whenever the occasion requires.

Article Information

Author contributions

Data curation: JHC, SLJ. Formal analysis: HLC. Methodology: HLC. Visualization: SLJ, GHJ. Writing-original draft: SLJ, GHJ. Writing-review & editing: HLC, JHC, GHJ. All authors read and approved the final manuscript

Conflicts of interest

Gu-Hee Jung is an editorial board member of the journal but was not involved in the peer reviewer selection, evaluation, or decision process of this article. No other potential conflicts of interest relevant to this article were reported.

Funding

None.

Data availability

Contact the corresponding author for data availability.

References

- Johnston PS, Sears BW, Lazarus MR, Frieman BG. Fixation of unstable type II clavicle fractures with distal clavicle plate and suture button. J Orthop Trauma 2014;28:e269-72.
- 2. Hohmann E, Hansen T, Tetsworth K. Treatment of Neer type II fractures of the lateral clavicle using distal radius locking plates combined with TightRope augmentation of the coraco-clavicular ligaments. Arch Orthop Trauma Surg

2012:132:1415-21.

- Kaipel M, Majewski M, Regazzoni P. Double-plate fixation in lateral clavicle fractures-a new strategy. J Trauma 2010:69:896-900.
- **4.** Andersen JR, Willis MP, Nelson R, Mighell MA. Precontoured superior locked plating of distal clavicle fractures: a new strategy. Clin Orthop Relat Res 2011;469:3344-50.
- 5. Lee W, Choi CH, Choi YR, Lim KH, Chun YM. Clavicle hook plate fixation for distal-third clavicle fracture (Neer type II): comparison of clinical and radiologic outcomes between Neer types IIA and IIB. J Shoulder Elbow Surg 2017;26:1210-5.
- 6. Sun S, Gan M, Sun H, Wu G, Yang H, Zhou F. Does subacromial osteolysis affect shoulder function after clavicle hook plating. Biomed Res Int 2016;2016:4085305.
- Lin HY, Wong PK, Ho WP, Chuang TY, Liao YS, Wong CC. Clavicular hook plate may induce subacromial shoulder impingement and rotator cuff lesion: dynamic sonographic evaluation. J Orthop Surg Res 2014;9:6.
- 8. Flinkkilä T, Heikkilä A, Sirniö K, Pakarinen H. TightRope versus clavicular hook plate fixation for unstable distal clavicular fractures. Eur J Orthop Surg Traumatol 2015;25:465-9.
- Shin SJ, Ko YW, Lee J, Park MG. Use of plate fixation without coracoclavicular ligament augmentation for unstable distal clavicle fractures. J Shoulder Elbow Surg 2016;25:942-8.
- Seyhan M, Kocaoglu B, Kiyak G, Gereli A, Turkmen M. Anatomic locking plate and coracoclavicular stabilization with suture endo-button technique is superior in the treatment of Neer Type II distal clavicle fractures. Eur J Orthop Surg Traumatol 2015;25:827-32.
- Struhl S, Wolfson TS. Closed-loop double endobutton technique for repair of unstable distal clavicle fractures. Orthop J Sports Med 2016;4:2325967116657810.
- Mirbolook A, Sadat M, Golbakhsh M, Mousavi MS, Gholizadeh A, Saghari S. Distal clavicular fracture treatment with suture anchor method. Acta Orthop Traumatol Turc 2016;50:

298-302.

- 13. Green DP, Rockwood CA, Bucholz RW, Heckman JD, Tornetta P. Rockwood and Green's fractures in adults. 8th ed. Lippincott Williams & Wilkins; 2015.
- 14. Tiefenboeck TM, Boesmueller S, Binder H, et al. Displaced Neer Type IIB distal-third clavicle fractures-Long-term clinical outcome after plate fixation and additional screw augmentation for coracoclavicular instability. BMC Musculoskelet Disord 2017:18:30.
- Herrmann S, Schmidmaier G, Greiner S. Stabilisation of vertical unstable distal clavicular fractures (Neer 2b) using locking T-plates and suture anchors. Injury 2009;40:236-9.
- 16. Jung GH, Park CM, Kim JD. Biologic fixation through bridge plating for comminuted shaft fracture of the clavicle: technical aspects and prospective clinical experience with a minimum of 12-month follow-up. Clin Orthop Surg 2013;5:327-33.
- 17. Bishop JY, Roesch M, Lewis B, Jones GL, Litsky AS. A biomechanical comparison of distal clavicle fracture reconstructive techniques. Am J Orthop (Belle Mead NJ) 2013;42:114-8.
- **18.** Madsen W, Yaseen Z, LaFrance R, et al. Addition of a suture anchor for coracoclavicular fixation to a superior locking plate improves stability of type IIB distal clavicle fractures. Arthroscopy 2013;29:998-1004.
- Rieser GR, Edwards K, Gould GC, Markert RJ, Goswami T, Rubino LJ. Distal-third clavicle fracture fixation: a biomechanical evaluation of fixation. J Shoulder Elbow Surg 2013;22:848-55.
- 20. Foerter JA, O'Brien SD, Bui-Mansfield LT. A systematic approach to the interpretation of the shoulder radiograph to avoid common diagnostic errors. Contemp Diagn Radiol 2017;40:1-7.
- **21.** Bhatia DN, de Beer JF, du Toit DF. Coracoid process anatomy: implications in radiographic imaging and surgery. Clin Anat 2007;20:774-84.

Lateral marginal fractures of the patella and patellofemoral pain

Jae-Ang Sim, MD¹, Chul-Ho Kim, MD¹, Ji Wan Kim, MD²

Background: This study investigated the characteristics of lateral marginal fractures of the patella and evaluated the clinical outcomes.

Methods: We retrospectively reviewed all patients with lateral marginal fractures of the patella, defined as a vertical fracture line within 15 mm of the lateral patellar border, from 2008 to 2020. In total, 41 patients were included. Patient characteristics, radiologic findings, and clinical outcomes, including the Lysholm score at 1 year postoperation, were evaluated.

Results: The injury mechanisms were direct in 34 cases and indirect in seven. Furthermore, 85% of patients had a skyline view of the patella at the initial visit, and one medial subluxation of the patella was found. Forty of the 41 patients underwent surgery. Anatomical and nonanatomical (>1-mm displacement or excision) reductions were carried out in 36 cases (88%) and 5 cases (12%), respectively. The average Lysholm score was 89.1 (range, 67–99). The nonanatomical reduction group had a poorer functional score (79.8 vs. 90.4; P=0.010). Lateral patellar compression syndrome occurred in two patients with nonanatomical reduction.

Conclusions: Lateral marginal fractures of the patella affected patellofemoral stability. Anatomical reduction showed good functional outcomes, while nonanatomical reduction was associated with patellofemoral stability and pain. Therefore, surgeons should perform anatomical reduction with any appropriate fixation method.

Level of evidence: IV.

Keywords: Patella; Patellofemoral joint; Marginal fracture; Lateral marginal; Complications

Introduction

Patellar fractures account for approximately 1% of all fractures and may result from direct or indirect injury mechanisms [1]. The indirect mechanism consists of direct blow to anterior knee from a fall or dashboard injury. Indirect forces with eccentric contraction of the quadriceps typically lead to transverse fractures [2]. In contrast, a direct blow more likely results in comminution, articular injury, anterior soft tissue damage, and open injury [2]. A vertical fracture pattern is not uncommon, and the fracture line is usually seen to involve the lateral facet and to lie between the middle and lateral third of the patella [3]. While Boström [1] reported that lateral avulsion was the most common mechanism in 75% of their patients, Dowd [4] reported that direct compression of the patella in a hyperflexed knee was responsible for this kind of fracture. However, there have been a few old reports about lateral marginal fractures of

Original Article

Received: March 27, 2025 Revised: May 7, 2025 Accepted: June 5, 2025

Correspondence to:

Ji Wan Kim, MD
Department of Orthopedic Surgery,
Asan Medical Center, University of Ulsan
College of Medicine, 88 Olympic-ro 43gil, Songpa-gu, Seoul 05505, Korea
Tel: +82-2-3010-3530
Email: jaykim@amc.seoul.kr

© 2025 The Korean Orthopaedic Trauma Association.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

¹Department of Orthopedic Surgery, Gachon University Gil Medical Center, Incheon, Korea

²Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

the patella; therefore, we attempted to investigate it based on our experience. This study aimed to define the characteristics of lateral marginal fractures of the patella and evaluate their clinical outcomes. Given the potential impact of reduction quality on patellofemoral mechanics and pain, we hypothesized that anatomical reduction would lead to better functional outcomes compared to nonanatomical reduction. This study further seeks to provide clinically relevant insights to guide optimal surgical management of these rare fractures.

Methods

Ethics Statement

The study was approved by the Institutional Review Board (IRB) of Asan Medical Center (IRB No. 2020-1075) and performed in accordance with the principles of the Declaration of Helsinki. The need for written informed consent was waived because of its retrospective design by the IRB.

We retrospectively reviewed all patients with lateral marginal fractures of the patella in two level I trauma centers from January 2008 to December 2020. A lateral marginal fracture was defined as a longitudinal lateral facet fracture with a fracture line within 15 mm of the lateral patellar border, based on consistent patterns observed in our patient cohort and anatomical considerations related to the lateral facet width. This operational definition was used to distinguish lateral marginal fractures from more central vertical or transverse fractures. The exclusion criteria were fracture with additional transverse component, periprosthetic fractures, and less than 1 year of follow-up.

During the period, a total of 1,131 patellar fractures were

screened, and 145 (12.8%) were classified into AO/OTA type B1 (lateral vertical fracture) using computed tomography (CT) images. Moreover, 47 lateral marginal fractures (4.2%) were enrolled, but six patients were excluded because of less than 1 year of follow-up. Finally, 41 patients (31 males and 10 females) were included in the study with an average age of 46.6 years (range, 21-82 years). The average follow-up was 20.5 months (range, 12-52 months). The choice of surgical method was based on fragment size and comminution. Screw fixation was used for adequately sized fragments, tension band wiring (TBW) for smaller or comminuted fragments, and hook plating for selected avulsion-type fractures [5,6]. Patient characteristics and fracture pattern included injury mechanism, open fracture, comminution, distance from the lateral border to the fracture site, initial displacement, and patellar subluxation and treatment method, complication, and functional outcomes. Complications included infection, malunion, and secondary interventions due to persistent pain. The functional outcomes were evaluated with the Lysholm score at 1 year postoperatively.

The clinical outcomes were compared between the anatomical and nonanatomical reduction groups (Table 1). The nonanatomical group was defined as having >1-mm displacement or excision of the fragment. Statistical analysis was performed using IBM SPSS ver. 21.0 (IBM Corp.). Dichotomous data were compared using Fisher exact test, while the independent t-test and Mann-Whitney test were used for the comparison of parametric and nonparametric data, respectively. Statistical significance was set at P<0.05.

Table 1. Summary of key clinical and radiological results by reduction type

Variable	Total (n=41)	Anatomical reduction group (n=36)	Nonanatomical reduction group (n=5)
Mean Lysholm score	89.1	90.4	79.8
Functional outcome			
Excellent	25 (61)	23 (63.9)	2 (40)
Good	8 (19.5)	7 (19.4)	1 (20)
Fair	8 (19.5)	6 (16.7)	2 (40)
Poor	0	0	0
Complication			
Malunion	1 (2.4)	0	1 (20)
Persistent pain requiring removal	1 (2.4)	0	1 (20)

Values are presented as number (%).

Results

The injury mechanisms included 34 direct injuries (82.9%) and seven indirect injuries (17.1%). Three patients (7.3%) had open fractures, and 11 (26.8%) had comminuted fractures. The average distance from the lateral border of the patella to the fracture site was 9.9 mm (range, 3–15 mm), and the average displacement was 2.9 mm (range, 2–16 mm). Furthermore, 85% of the patients had the skyline view of the patella at the initial visit, and there was one case of medial patellar subluxation (Fig. 1).

Surgical treatment was performed in all patients, except one. The surgical methods were as follows: 24 cases, screw fixation (Fig. 2); eight, screw fixation combined with

TBW; four, TBW; three, fragment removal and retinaculum repair; and one, hook plating (Fig. 1). In one patient with conservative treatment, knee X-ray did not show a fracture, and further evaluation was delayed because he was intubated and cared for in the intensive care unit for polytrauma with small bowel perforation, left clavicle shaft fracture, and mandible open fracture (Fig. 3). One month after injury, he complained of persistent right knee pain, and magnetic resonance imaging (MRI) and CT revealed a lateral marginal fracture.

Anatomical reduction was acquired in 36 cases (88%), but there were five cases (12%) involving nonanatomical reduction (>1-mm displacement and excision of fragment). All cases with internal fixation acquired bone union

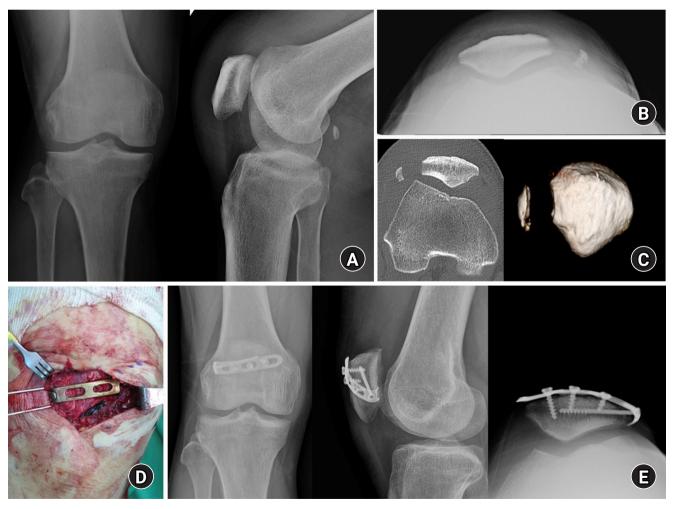


Fig. 1. Lateral marginal fracture with a small fragment. (A) Right knee anteroposterior and lateral views showing no definite fracture. (B) Skyline view revealing medial subluxation of the patella. (C) Knee computed tomography showing a small lateral fragment. (D) Hook plating. (E) Postoperative 1-year X-ray showing union, with a Lysholm score of 94.

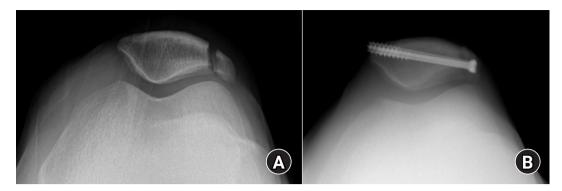


Fig. 2. (A) Lateral marginal fracture. (B) Screw fixation.

Fig. 3. A 39-year-old male patient. (A) Initial X-ray showing no definite fracture. (B) Computed tomography performed 1 month after injury revealed a tiny fragment at the lateral border of the patella. (C) Postoperative 1-year anteroposterior and lateral views. (D) Skyline view showing the remaining fragment at the lateral border and 12° tilt of the patella, with a Lysholm score of 67.

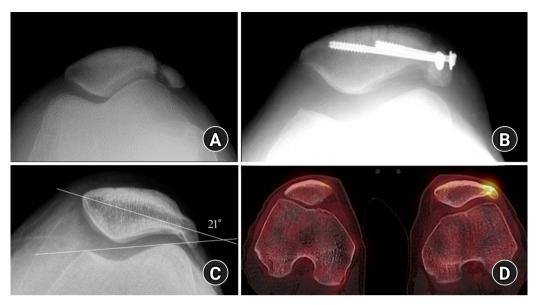


Fig. 4. A 41-year-old male patient. (A) Lateral marginal fracture of the left patella. (B) Displaced fragment after screw fixation. (C) Skyline view showing malunion of the lateral patella and 21° lateral tilt. (D) Bone single-photon emission computed tomography revealing hot uptake at the lateral fragment.

without complications, including infection. The average Lysholm score was 89.1 (range, 67-99): 25 cases (61%), excellent (>90); eight cases (19.5%), good (84-90); eight cases (19.5%), fair (65-83); and 0 case, poor (<65). The nonanatomical reduction group had a poorer functional score (79.8 vs. 90.4; P=0.010). There were five patients in this group: one patient received conservative treatment, another underwent screw fixation, and the others underwent excision. Two cases (40%) of complications were noted, involving malunion and persistent pain that required implant removal. The patient treated by screw fixation had malunion with a laterally displaced fragment and complained of persistent anterior knee pain (Fig. 4). Reoperation for removal was performed, but the pain was persistent. Follow-up knee X-ray after removal showed a 21° lateral tilt of the patella with a "comma sign," and bone single-photon emission CT findings evidenced the patellofemoral pain. The patient who was managed conservatively also had persistent anterior knee pain with tenderness along the lateral patellar border with a 12° lateral tilt of the patella (Fig. 3). The cause of pain in these two patients was considered as "lateral patellar compression syndrome."

Discussion

The current study revealed that lateral marginal fractures of the patella were uncommon (4.2%) and most of them (82.9%) were caused by a direct injury. A direct injury to the patella increased the compression force and resulted in a vertical fracture. As the direct force is significantly increasing, the patella would indent the lateral femoral condyle. The history of injury in the current study would support this injury mechanism. An indirect injury on the patella also led to lateral marginal fractures caused by sudden excessive muscle pull compressing the patella onto the lateral femoral condyle, which acted as a fulcrum while the knee was flexed [7]. Another rare pattern is stress fracture (not observed in the current study) caused by middle-distance running or weightlifting, in which strong and repetitive the quadriceps contractions during flexion angles between 20° and 90° could induce compression of the lateral articular facet against the lateral femoral condyle [8,9].

The patellar marginal fractures are uncommon injuries compared with other types [10,11]. The marginal fractures are potentially more common than supposed because it often remain undiagnosed as acute injuries [4]. This fracture often leads to less acute disability than a stellate or transverse fracture, and plain radiographs are often unhelpful.

In the present study, most of the patients were diagnosed at initial visit, but the diagnosis of one case (2.4%) was delayed 1 month after injury, which was a special case because of unavailability of conversation with the patient and no definite fracture in initial X-ray. However, CT or MRI has been currently performed for patients with knee trauma, and would be helpful to detect marginal fractures [12,13].

In the radiographic review, we found two significant findings: medial patellar subluxation (Fig. 1) and lateral tilt with bone fragment/ossifying tissue along the lateral border of the patella (Figs. 3 and 4). The abnormalities of dynamic muscle strength (vastus medialis obliquus) and static soft tissue restraint (lateral retinaculum) have profound effects on patellofemoral kinematics and may lead to clinical dysfunction [14]. Medial subluxation is uncommon and usually seen after a lateral release surgical procedure [15]. However, as shown in Fig. 1, displaced or inappropriately reduced lateral marginal fracture would lead to medial subluxation. Medial subluxation or dislocation causes patellofemoral pain syndrome [16], and appropriate reduction should be achieved to restore soft tissue tension. Another problem is the "lateral tilt of the patella with ossifying tissue." The newly developed tissue results in aberrant anatomy and ultimately biomechanical abnormalities [14]. The lateral retinaculum also plays an important role in patellofemoral pain syndrome [16]. Injury to the lateral retinaculum, particularly when accompanied by lateral ossifying tissue or a displaced fragment, may result in fibrotic changes and nerve entrapment within the retinaculum. This neuropathic alteration resembles the histopathological features of a Morton neuroma, characterized by perineural fibrosis and nerve irritation [17]. A tilt angle between 0° and 5° is normal, that between 5° and 10° is borderline, and an angle greater than 10° is considered abnormal. In addition, an abnormal tilt was detected in 85% of patients experiencing malalignment pain [18]. It seemed to be a kind of "lateral patellar compression syndrome," which is associated with overload and increased pressure on the lateral facet due to pathologic lateral soft tissue restraints [19]. As shown in Figs. 3 and 4, failure to diagnose or restore marginal fracture of the patella may result in the disability of the knee and potential degenerative changes in the patellofemoral joint.

The current study demonstrated that the postoperative reduction state was related to the functional outcomes.

Generally, surgical indications were articular step-off \geq 1–2 mm and the displacement of articular fragment \geq 2–3 mm with the loss of active knee extension [20]. The goals of treatment were as follows: (1) restoration of the extensor mechanism and (2) maintenance of a congruous articular surface [21]. Lateral marginal fractures mainly involve a vertical component and a well-preserved extensor mechanism but are commonly related to articular step-off or displacement. When the reduction was anatomical, the functional outcome was good, while patellofemoral pain, sometimes associated with lateral patellar compression syndrome in the case of failure of reduction, was observed to worsen function. Therefore, such fractures should be managed focusing on anatomical reduction.

The main surgical method was screw fixation, which was useful to secure the fragment firmly but had limitation to small fragment (Fig. 4). For the small fragments, TBW was used in combination or isolation. It is challenging to fix comminuted small fragments, in which excision was one option, and hook plating has been introduced recently for the avulsion fragment [6]. There were several studies about the clinical outcomes of patellar fractures but few results about marginal fracture except inferior pole fractures [6,22,23]. Therefore, further studies about the fixation method and its outcomes are needed.

The limitations of this study include its retrospective nature and the small number of cases. However, the participants were enrolled from a large cohort of 1,131 patellar fractures. Considering the rarity of these fractures, the study findings could be meaningful, even with the small number of cases. In addition, a potential bias may be present because the surgeries were performed at different centers. To overcome this kind of bias, a standard surgical procedure based on basic fracture principles was performed. Despite these limitations, this is a unique study about lateral marginal fractures of the patella and related clinical characteristics.

Conclusions

Lateral marginal fractures of the patella are uncommon injuries, most often caused by direct trauma. These fractures can affect patellofemoral stability and lead to anterior knee pain. In this study, anatomical reduction was associated with better functional outcomes, while nonanatomical

reduction was linked to persistent pain. Therefore, we recommend that surgeons should perform anatomical reduction with any fixation method.

Article Information

Author contributions

Conceptualization: JAS, CHK, JWK. Data curation: JAS, CHK, JWK. Formal analysis: JAS, CHK, JWK. Investigation: JAS, JWK. Methodology: JAS, JWK. Project administration: CHK, JWK. Resources: CHK, JWK. Software: CHK. Supervision: CHK, JWK. Validation: CHK, JWK. Visualization: CHK. Writing-original draft: JAS. Writing-review & editing: CHK, JWK. All authors read and approved the final manuscript.

Conflicts of interest

Jae-Ang Sim is the Editor-in-Chief, and Ji Wan Kim is the Deputy Editor of the journal but was not involved in the peer reviewer selection, evaluation, or decision process of this article. No other potential conflicts of interest relevant to this article were reported.

Funding

None.

Data availability

Contact the corresponding author for data availability.

References

- 1. Boström A. Fracture of the patella: a study of 422 patellar fractures. Acta Orthop Scand Suppl 1972;143:1-80.
- Harris RM. Fractures of the patella and injuries to the extensor mechanism. In: Bucholz RW, Heckman JD, Court-Brown CM, eds. Rockwood and Green's fractures in adults. 6th ed. Lippincott Williams & Wilkins; 2006. p. 1969-98.
- 3. Lack WD, Karunakar MA. Patellar fractures and dislocations and extensor mechanism injuries. In: Tornetta P III, Ricci WM, Ostrum RF, et al., eds. Rockwood and Green's fractures in adults. 9th ed. Lippincott Williams & Wilkins, a Wolters Kluwer business; 2019. p. 2537-73.
- 4. Dowd GS. Marginal fractures of the patella. Injury 1982; 14:287-91.
- 5. Koh JH, Song HK, Cho WT, Sakong S, Phd SL. Treatment of

- avulsion fractures around the knee. J Musculoskelet Trauma 2025;38:63-73.
- **6.** Jang JH, Rhee SJ, Kim JW. Hook plating in patella fractures. Injury 2019;50:2084-8.
- 7. Lapidus PW. Longitudinal fractures of the patella. J Bone Joint Surg 1932;14:351-79.
- **8.** Devas MB. Stress fractures of the patella. J Bone Joint Surg Br 1960;42-B:71-4.
- **9.** Park CJ, Suh KT, Lee SM, Cho HJ. Longitudinal stress fracture of the patella in a female weightlifter. J Orthop Sci 2016;21:241-4.
- **10.** Scott JC. Fractures of the patella. J Bone Joint Surg Br 1949; 31B:76-81.
- 11. Byun SE, Sim JA, Joo YB, et al. Changes in patellar fracture characteristics: a multicenter retrospective analysis of 1596 patellar fracture cases between 2003 and 2017. Injury 2019;50:2287-91.
- Sim JA, Joo YB, Choi W, et al. Patellar fractures in elderly patients: a multicenter computed tomography-based analysis. Arch Orthop Trauma Surg 2021;141:1439-45.
- Byun SE, Shon OJ, Sim JA, et al. Application of three-dimensional computed tomography improved the interrater reliability of the AO/OTA classification decision in a patellar fracture. J Clin Med 2021;10:3256.
- 14. Sherman SL, Plackis AC, Nuelle CW. Patellofemoral anatomy and biomechanics. Clin Sports Med 2014;33:389-401.
- 15. Akşahin E, Yumrukçal F, Yüksel HY, Doğruyol D, Celebi L. Role of pathophysiology of patellofemoral instability in the treatment of spontaneous medial patellofemoral subluxation: a case report. J Med Case Rep 2010;4:148.
- Collado H, Fredericson M. Patellofemoral pain syndrome. Clin Sports Med 2010;29:379-98.
- Sanchis-Alfonso V, Rosello-Sastre E, Martinez-Sanjuan V. Pathogenesis of anterior knee pain syndrome and functional patellofemoral instability in the active young. Am J Knee Surg 1999;12:29-40.
- 18. Ceder LC, Larson RL. Z-plasty lateral retinacular release for the treatment of patellar compression syndrome. Clin Orthop Relat Res 1979;(144):110-3.
- Saper MG, Shneider DA. Diagnosis and treatment of lateral patellar compression syndrome. Arthrosc Tech 2014;3:e633-8.
- **20.** LeBrun CT, Langford JR, Sagi HC. Functional outcomes after operatively treated patella fractures. J Orthop Trauma 2012;26:422-6.

- **21.** Kakazu R, Archdeacon MT. Surgical management of patellar fractures. Orthop Clin North Am 2016;47:77-83.
- **22.** Oh HK, Choo SK, Kim JW, Lee M. Internal fixation of displaced inferior pole of the patella fractures using vertical wiring augmented with Krachow suturing. Injury 2015;46:2512-
- 5.
- 23. Oh HC, Yoon HK, Ha JW, Park SH, Lee S. Clinical outcomes of triple tension band wirings in comminuted patellar fracture: a comparison with conventional tension band wiring. J Korean Fract Soc 2024;37:82-6.

Risk factors of surgical complications after use of the femoral neck system: a random forest analysis

Chul-Ho Kim, MD¹, Hyun-Chul Shon, MD², Han Soul Kim, MD³, Ji Wan Kim, MD¹, Eic Ju Lim, MD²

Background: The femoral neck system (FNS), a novel fixation device for managing femoral neck fractures (FNFs), has gained popularity in recent years. However, analyses of the surgical complications and reoperation risks associated with the use of FNS remain limited.

Methods: This retrospective observational study analyzed 57 patients who had undergone FNS fixation for FNF at two university hospitals between July 2019 and February 2024. Demographic, perioperative, and outcome variables, including age, sex, fracture classification (Garden, Pauwels, and AO), implant characteristics, tip-apex distance (TAD), neck shortening, and neck-shaft alignment, were analyzed. In addition to univariate analysis, a machine learning analysis was conducted using a random forest classifier with stratified sampling (80% training, 20% testing). The accuracy, precision, recall, F1-score, and area under the receiver's operating curve were calculated to assess model performance.

Results: Ten patients experienced osteonecrosis of the femoral head (n=6), implant cutout or penetration (n=3), and peri-implant fracture (n=1). Univariate analysis revealed that the TAD in the complication group was significantly shorter than that in the control group (12.1 vs. 16.7 mm; P=0.012). Additionally, neck shortening in the complication group was greater than that in the control group (4.9 vs. 2.3 mm; P=0.011). The random forest model achieved an accuracy of 83.3% and identified postoperative neck-shaft angle (NSA) as the most important predictor of complications (feature importance, 0.161), followed by bolt length (0.102) and preoperative NSA (0.094).

Conclusions: Risk factor analysis conducted using a random forest model identified postoperative NSA as the most important feature associated with postoperative complications following FNS. Therefore, care should be taken to normalize the postoperative NSA during FNF surgery.

Level of evidence: III.

Keywords: Femoral neck fractures; Femur neck; Femoral neck system; FNS; Complication

Introduction

Femoral neck fracture (FNF), a prevalent type of orthopedic injury, poses unresolved challenges [1]. The femoral neck system (FNS; DePuy Synthes), introduced for the dynamic fixation of the femoral neck with angular stability, has largely replaced traditional fixation methods. Compared with multiple cannulated cancellous screws (CCS), FNS facilitates the achievement of stronger fixation owing to the presence of the

Original Article

Received: March 18, 2025 Revised: May 21, 2025 Accepted: July 3, 2025

Correspondence to:

Eic Ju Lim, MD

Department of Orthopedic Surgery, Chungbuk National University Hospital, Chungbuk National University College of Medicine, 776 1sunhwan-ro, Seowongu, Cheongju 28644, Korea Tel: +82-43-269-6077 E-mail: limeicju@chungbuk.ac.kr

© 2025 The Korean Orthopaedic Trauma Association.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

¹Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

²Department of Orthopedic Surgery, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea

³Department of Orthopedic Surgery, Naeun Hospital, Incheon, Korea

screw-plate construct [2]. Furthermore, the integration of a blade and an anti-rotation screw in this method enhances the axial and rotational stability [3]. In contrast to dynamic hip screws (DHS), the FNS technique involves minimal soft tissue stripping. Thus, it is a minimally invasive technique with a reduced risk of bleeding [4,5].

FNF classified as Pauwel types 1 and 2 were fixed with three CCS as a minimally invasive strategy initially. In contrast, FNF classified as Pauwel type 3 were fixed with an angular stable device to overcome shear force caused by the vertical fracture line. Because FNS provides angular stability with minimally invasive feature [2], theoretically, it can be used for the management of all Pauwel types.

Several studies have compared FNS with traditional fixation implants [2,4-7]. However, to the best of our knowledge, studies exploring the complications associated with FNS are limited. Therefore, this study used the random forest technique, a machine learning method, to identify the factors associated with the incidence of complications following surgical fixation with FNS.

Methods

Ethics Statement

The study was approved by the Institutional Review Board (IRB) of Asan Medical Center (Asan Institute for Life Science, IRB No. 2016-0932) and performed in accordance with the principles of the Declaration of Helsinki. The need for written informed consent was waived by the IRB.

Study Population

The medical records of patients aged ≥18 years who had presented to two university teaching hospitals with FNFs between July 2019 and February 2024 were retrospectively analyzed in this retrospective observational study. Only patients who had undergone surgical treatment using FNS were included in the present study. Patients who presented with pathologic or neglected fractures were excluded. Finally, 57 patients were included in the analysis. The patients were divided into two groups, the control and complication groups, according to the presence of complications—specifically, osteonecrosis of the femoral head (ONFH), nonunion, and peri-implant fracture—in univariate analysis.

Study Variables

The demographic data, perioperative profiles, and postoperative and radiographic outcomes were evaluated to identify the risk factors for the incidence of complications following the fixation of FNS.

The demographic characteristics evaluated included age, sex, fracture site, mechanism of injury, body mass index (BMI), smoking, Charlson comorbidity index (CCI) [8], American Society of Anesthesiologists (ASA) classification [9], preoperative Koval score [10], Garden type [11], Pauwels classification [12], AO classification [13] and follow-up length.

The perioperative profiles and outcomes evaluated comprised the time to surgery, length of stay, implant profile, the position of the bolts, neck-shaft alignment, tip-apex distance (TAD), neck shortening, and complications. The implant profile included the number of plate holes and the length of the bolt. The bolt position was measured in the anteroposterior (AP) and lateral views [14]. The bolt position in the AP view was classified as follows: superior, center, and inferior. The bolt position in the lateral view was classified as follows: anterior, center, and posterior. The preoperative neck-shaft angle (NSA), postoperative NSA [15], and deviation in the Garden alignment index (GAI) [16] were measured to determine the neck-shaft alignment. GAI was measured by the angle between trabecular line in the femoral head and the longitudinal axis of the femoral shaft's medial cortex. The difference between the affected and contralateral sides was defined as the deviation of GAI, which was used to evaluate the quality of fracture reduction.

The TAD was measured in the AP and lateral views, and the sum of the TAD values in both views was calculated using the methods described by Geller et al. [17]. Neck shortening at the final follow-up visit was measured using the methods described by Zheng et al. [7]. As described in the methods of Geller et al. [17] and Zheng et al. [7], the magnification of radiographs was considered when measuring the TAD and neck shortening with the diameter of the bolt fixed at 10 mm. Complication was evaluated as ONFH, nonunion, and peri-implant fracture during the follow-up period. For cases of ONFH, the presence of sclerotic lesions was assessed on simple AP and translateral radiographic views up to the final follow-up visit. If ONFH of Ficat-Arlet classification stage I [18] or higher was suspected, additional magnetic resonance imaging (MRI) was performed

to confirm the lesion. Nonunion was defined as fixation failure, characterized by implant breakage, loss of reduction, or a persistent fracture line visible on radiographs at a minimum of 6 months postoperatively. The incidence of complications such as ONFH, cut-out or through penetration, and peri-implant fracture during the follow-up period was evaluated.

Statistical Analysis

Univariate analysis was conducted using SPSS ver. 23.0 (IBM Corp.). Categorical variables were assessed using the chi-square test or Fisher exact test, whereas categorical variables were assessed using the independent t-test. Continuous data are presented as the means and standard deviations. Statistical significance was set at P<0.05. Bonferroni correction was applied for multiple comparisons.

The machine learning method random forest was implemented using Python programming language (ver. 3.8, Python Software Foundation) for risk factor analysis [19-21]. The analysis aimed to identify the key predictors associated with complications. Age, sex, fracture site, mechanism of injury, BMI, smoking, CCI, ASA, preoperative Koval score, Garden type, Pauwels type, AO classification, time to surgery, length of hospital stay, implant profiles, bolt position, neck-shaft alignment, TAD, and neck shortening were included as independent variables. This left a set of variables that represent potential demographic, procedural, and clinical factors contributing to complications. A stratified sampling approach was used to split the dataset into training (80%) and testing (20%) subsets. This approach ensured that both classes of the target variable (complication, 1 and complication, 0) were proportionally represented in each subset.

A random forest classifier comprising 100 decision trees with default hyperparameters was employed. The Gini impurity criterion was used to optimize node splits, thereby maximizing the class purity within each split. The feature importance scores were computed based on the mean decrease in impurity across all decision trees to facilitate the identification of the variables most strongly associated with the outcome. A comprehensive set of metrics, encompassing accuracy, precision, recall, F1 score, and area under the receiver's operating curve (ROC-AUC), was used to assess model performance.

Results

Univariate Analysis

The control and complication groups comprised 47 and 10 patients, respectively (Table 1). Comparisons are presented as 'control vs. complication group' throughout the manuscript. No significant differences were observed between the groups in terms of age (58.0±14.0 vs. 55.1±11.2; P=0.542), distribution of female patients (62% and 50%; P=0.504), or other demographic data such as injury mechanism, BMI, smoking, CCI, ASA, preoperative Koval score, and follow-up length. Severe type of fracture pattern (Garden type 3 and 4, 41% vs. 70%; Pauwels type 3, 47% vs. 60%) was more prevalent in the complication group; however, the differences did not reach statistical significance.

Table 2 presents the perioperative profile and outcomes. No significant differences were observed between the groups in terms of time to surgery or length of stay. Similarly, no significant differences were observed between the groups in terms of the number of holes (2-hole, 30% vs. 40%; P=0.709) or bolt length (86.0±7.1 vs. 91.5±12.0; P=0.189). The bolt was positioned at the center in the AP view in 70% and 50% of cases in the control and complication groups, respectively (P=0.193). The bolt was positioned at the center in the lateral view in 87% and 90% of cases in the control and complication groups, respectively (P=0.530). In addition to greater GAI deviation $(4.3\pm4.4 \text{ vs. } 9.5\pm11.1; P=0.177)$, greater preoperative (137.6°±12.0° vs. 134.9°±12.0°; P=0.514) and postoperative (135.8°±5.6° vs. 132.8°±16.7°; P=0.595) varus-NSA were observed in the complication group; however, these differences did not reach statistical significance. The TAD in the AP view (8.4±2.6 mm vs. 5.9±2.3 mm; P=0.008) and the sum of TAD (16.7±5.3 mm vs. 12.1±4.0 mm; P=0.012) were significantly lower in the complication group. Greater neck shortening was observed in the complication group (2.3±3.0 mm vs. 4.9±2.3 mm; P=0.011). ONFH, cut-out or through penetration, and peri-implant fracture were observed in six patients, three patients, and one patient, respectively (Table 3).

Surgical Complication Analysis

The random forest model achieved moderate performance in predicting the incidence of complications, with an accuracy of 83.3%. The model achieved a precision of 50.0%, indicating that only half of the predicted positive cases

Table 1. Demographic data and fracture characteristics

Characteristic	Control group (n=47)	Complication group (n=10)	P-value
Age (yr)	58.0±14.0	55.1±11.2	0.542
Female sex	29 (62)	5 (50)	0.504
Left side	21 (45)	6 (60)	0.492
Mechanism of injury			0.447
Simple fall	30 (64)	9 (90)	
Fall from height	12 (25)	1 (10)	
Motor vehicle crash	5 (11)	0 (0)	
BMI (kg/m²)	21.8±3.1	22.5±3.2	0.481
Smoker	7 (15)	2 (20)	0.650
CCI			0.539
0–3	30 (64)	6 (60)	
4–6	13 (28)	2 (20)	
7–9	4 (8)	2 (20)	
ASA			0.744
1	16 (34)	2 (20)	
II	21 (45)	6 (60)	
III	10 (21)	2 (20)	
Koval score ^{a)}			0.482
1	26 (55)	6 (60)	
2	4 (9)	0 (0)	
3	2 (4)	0 (0)	
4	0 (0)	1 (10)	
5	14 (30)	3 (30)	
6	1 (2)	0 (0)	
Garden type			0.115
1	18 (38)	3 (30)	
2	10 (21)	0 (0)	
3	11 (24)	2 (20)	
4	8 (17)	5 (50)	
Pauwels type			0.556
1	7 (15)	0 (0)	
2	18 (38)	4 (40)	
3	22 (47)	6 (60)	
AO classification			0.882
31B1	27 (57)	6 (60)	
31B2	20 (43)	4 (40)	
Follow-up length (mo)	16.4±11.6	20.9±10.0	0.256

Values are presented as mean±standard deviation or number (%).

BMI, body mass index; CCI, Charlson comorbidity index; ASA, American Society of Anesthesiologists.

were correct. The model achieved a recall of 50.0%, indicating that some true positive cases were overlooked. The F1 score, which represents the harmonic mean of precision and recall, was 50.0%. This finding indicated that the ability of the model to balance precision and recall was limited.

The ROC-AUC score was 0.95, indicating that the model possesses strong discriminative ability. However, the real-world predictive power of the model may have been limited owing to the low recall and precision.

Feature importance analysis identified postoperative

^{a)}Preoperative Koval score.

Table 2. Perioperative profiles and outcomes

Variable	Control group (n=47)	Complication group (n=10)	P-value
Time to surgery (day)	0.91±1.0	0.60±0.8	0.366
Length of stay (day)	7.5±9.8	5.6±2.8	0.561
Implant profile			
Number of holes			0.709
1	33 (70)	6 (60)	
2	14 (30)	4 (40)	
Length of bolts	86.0±7.1	91.5±12.0	0.189
Bolt position in AP view			0.193
Superior	1 (2)	1 (10)	
Center	33 (70)	5 (50)	
Inferior	13 (28)	4 (40)	
Bolt position in lateral view			0.530
Anterior	4 (9)	0 (0)	
Center	41 (87)	9 (90)	
Posterior	2 (4)	1 (10)	
Neck-shaft alignment (°)			
Preoperative NSA	137.6±6.2	134.9±12.0	0.514
Postoperative NSA	135.8±5.6	132.8±16.7	0.595
Garden index deviation	4.3±4.4	9.5±11.1	0.177
TAD (mm)			
TAD in AP view	8.4±2.6	5.9±2.3	0.008
TAD in lateral view	8.3±3.1	6.2±3.4	0.054
Sum of TAD	16.7±5.3	12.1±4.0	0.012
Neck shortening (mm)	2.3±3.0	4.9±2.3	0.011

Values are presented as mean±standard deviation or number (%). AP, anteroposterior; NSA, neck-shaft angle; TAD, tip-apex distance.

Table 3. Complications

Complication type	No. of cases (n=10)	
Osteonecrosis of femoral head	6	
Cut-out or through	3	
Peri-implant fracture	1	

NSA (0.161) as the most significant predictor, followed by the length of the bolt (0.102) and preoperative NSA (0.094). A bar chart ranking the 10 most important features was generated to visualize the importance scores, highlighting the relative impact of each variable (Fig. 1).

Discussion

Univariate comparative analysis revealed that a shorter TAD and greater neck shortening were observed in the complication group. However, risk factor analysis using the random forest model identified postoperative NSA as the most important predictor of complications.

Although TAD, neck shortening, and NSA are clinically significant, the postoperative NSA warrants particular attention, given its relationship with other factors. However, the relatively small sample size of the present study complicated the application of the random forest model. Thus, further studies with a larger dataset must be conducted in the future.

Traditionally, classification systems such as the Garden classification system and Pauwels classification system were used to classify FNF [11,12]. However, these classification systems did not exert a statistically significant impact on prognosis in the present study. Pauwels classification helps identify clearer treatment pathways, as vertically oriented fractures (Pauwel type 3) can be managed relatively well by selecting an appropriate fixation construct. DHS

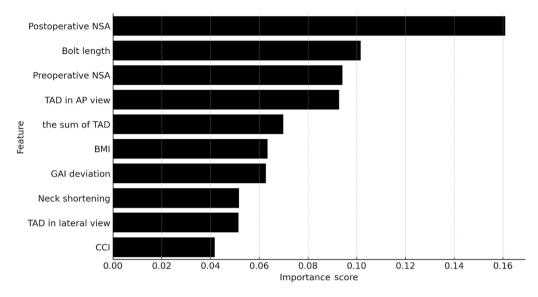


Fig. 1. Top 10 feature importance ranked by the random forest model in predicting complications. NSA, neck-shaft angle; TAD, tip-apex distance; AP, anteroposterior; BMI, body mass index; GAI, Garden alignment index; CCI, Charlson comorbidity index.

and anti-rotation screws, which were traditionally used for its management, have been replaced with FNS in recent years [22]. Garden classification can indicate the disruption of blood supply to femoral neck related with initial injury, which is difficult to address through surgical procedures. Although not statistically significant, the notable discrepancy in the proportion of Garden type 4 fractures (17% vs. 50%) indicates a potential clinical impact, warranting further investigation.

A TAD value of <25 mm was considered in previous studies [17]. Thus, the clinical impact for the TAD value (control vs. complication, 16.7 vs. 12.1 mm) was difficult to interpret in the present study, despite the significant difference observed between the two groups. Nevertheless, the findings of previous studies indicate that the complication and control groups underwent surgery with excellent TAD values. Notably, the TAD in the complication group was lower than that in the control group. Severe fracture types were presumed to contribute to TAD in that surgeons may insist on performing firm fixation to achieve optimal outcomes; however, this approach results in the insertion of the FNS bolt close to the subchondral bone of the femoral head. Zhou et al. [23] reported that a short screw-apex distance may be associated with ONFH. FNS has anti-rotation screws directed to the apex of the femoral head; thus, the short TAD may have influenced the incidence of complications.

Adverse events such as cortical comminution of the severed end, fracture fractionation, and improper reduction may lead to neck shortening after fixation [6]. This observation indicates that neck shortening is associated with the incidence of complications. However, neck shortening cannot be detected immediately after surgery; it becomes apparent over a period of weeks to months. Thus, care should be taken to minimize the risk of neck shortening during FNS surgery.

Univariate analysis revealed no significant differences between the groups in terms of the postoperative NSA. However, risk factor analysis conducted using the random forest model identified postoperative NSA as the most important feature (0.161), suggesting a strong relationship between this anatomical measurement and the incidence of complications. In situ fixation is sometimes performed during osteosynthesis in cases with stable fractures such as Garden type I or II. However, the quality of reduction plays a crucial role in improving the poor prognosis associated with unstable FNFs [24]. Unstable FNFs are inherently associated with a higher risk of complications than stable FNFs; thus, postoperative NSA is one of the few modifiable factors in the osteosynthesis process for unstable FNFs [25]. Subtle variations in the alignment influence the biomechanical stability and stress distribution [26]. Therefore,

care should be taken to normalize the postoperative NSA during FNF surgery.

This study has certain limitations. First, the relatively small sample size may have led to the low model performance score of the random forest model. In particular, there was a discrepancy between the results of the univariate analysis and the random forest model. While this can be attributed to the fundamental differences between the two analytical approaches, we acknowledge that the small sample size in our study may have limited the reliability of the random forest analysis. Further studies with larger sample sizes must be conducted to address this limitation. Second, variables with relatively lower importance were also considered owing to the retrospective study design. This may have affected the modeling process. Although this is a strength of the random forest model, the results must be interpreted with caution in conjunction with sample size considerations. Third, the follow-up period was short and inconsistent. This may have limited the detection of long-term complications and introduced variability in outcome assessment. Thus, cases with sufficient and consistent follow-up must be selected in future studies. Fourth, malunions such as varus deformity and femoral neck shortening were not specifically classified as complications, despite their potential to cause clinical problems. Although the degree of reduction was evaluated using the GAI deviation (9.5° in the complication group vs. 4.3° in the control group), a more detailed analysis focusing on malunion-related outcomes may provide additional clinical insights in future studies. In addition, not all patients were screened with MRI for ONFH among the complications as routinely, which may also have led to underestimation. According to previous studies, the incidence of asymptomatic ONFH that cannot be identified on plain radiographs after FNFs has been reported to be as high as 34.2% [27]. Further research is warranted to investigate this issue.

Conclusions

Risk factor analysis conducted using the random forest model identified postoperative NSA as the most important feature for postoperative complications following FNS. Therefore, care should be taken to normalize the postoperative NSA during FNF surgery.

Article Information

Author contributions

Conceptualization: CHK, JWK. Data curation: HCS, JWK. Formal analysis: HSK, JWK, EJL. Supervision: JWK. Writing-original draft: HCS, HSK, EJL. Writing-review & editing: CHK, JWK. All authors read and approved the final manuscript.

Conflicts of interest

Ji Wan Kim is the Deputy Editor of the journal but was not involved in the peer reviewer selection, evaluation, or decision process of this article. No other potential conflicts of interest relevant to this article were reported.

Funding

None.

Data availability

Contact the corresponding author for data availability.

References

- Sundkvist J, Brüggeman A, Sayed-Noor A, Möller M, Wolf O, Mukka S. Epidemiology, classification, treatment, and mortality of adult femoral neck and basicervical fractures: an observational study of 40,049 fractures from the Swedish Fracture Register. J Orthop Surg Res 2021;16:561.
- 2. Xu Z, Sun J, Li J, et al. Comparative analysis of the femoral neck system (FNS) vs. cannulated cancellous screws (CCS) in the treatment of middle-aged and elderly patients with femoral neck fractures: clinical outcomes and biomechanical insights. BMC Musculoskelet Disord 2024;25:735.
- **3.** Jiang X, Liang K, Du G, Chen Y, Tang Y, Geng K. Biomechanical evaluation of different internal fixation methods based on finite element analysis for Pauwels type III femoral neck fracture. Injury 2022;53:3115-23.
- 4. Moon JK, Lee JI, Hwang KT, Yang JH, Park YS, Park KC. Biomechanical comparison of the femoral neck system and the dynamic hip screw in basicervical femoral neck fractures. Sci Rep 2022;12:7915.
- 5. Stoffel K, Zderic I, Gras F, et al. Biomechanical evaluation of the femoral neck system in unstable pauwels III femoral neck fractures: a comparison with the dynamic hip screw and cannulated screws. J Orthop Trauma 2017;31:131-7.

- 6. Wang K, Lin D, Chen P, et al. Incidence and factors influencing neck shortening after screw fixation of femoral neck fractures with the femoral neck system. J Orthop Surg Res 2023;18:317.
- 7. Zheng S, Lin D, Chen P, et al. Comparison of femoral neck shortening after femoral neck system and cannulated cancellous screw fixation for displaced femoral neck fractures in young adults. Injury 2024;55:111564.
- **8.** Charlson M, Szatrowski TP, Peterson J, Gold J. Validation of a combined comorbidity index. J Clin Epidemiol 1994;47:1245-51.
- Daabiss M. American Society of Anaesthesiologists physical status classification. Indian J Anaesth 2011;55:111-5.
- Koval KJ, Skovron ML, Aharonoff GB, Meadows SE, Zuckerman JD. Ambulatory ability after hip fracture: a prospective study in geriatric patients. Clin Orthop Relat Res 1995;(310):150-9.
- Van Embden D, Rhemrev SJ, Genelin F, Meylaerts SA, Roukema GR. The reliability of a simplified Garden classification for intracapsular hip fractures. Orthop Traumatol Surg Res 2012;98:405-8.
- Bartonícek J. Pauwels' classification of femoral neck fractures: correct interpretation of the original. J Orthop Trauma 2001;15:358-60.
- Meinberg EG, Agel J, Roberts CS, Karam MD, Kellam JF. Fracture and dislocation classification compendium: 2018. J Orthop Trauma 2018;32 Suppl 1:S1-170.
- Bojan AJ, Beimel C, Taglang G, Collin D, Ekholm C, Jönsson A. Critical factors in cut-out complication after Gamma Nail treatment of proximal femoral fractures. BMC Musculoskelet Disord 2013;14:1.
- Boese CK, Dargel J, Oppermann J, et al. The femoral neckshaft angle on plain radiographs: a systematic review. Skeletal Radiol 2016;45:19-28.
- **16.** Yamakawa Y, Yamamoto N, Tomita Y, et al. Reliability of the garden alignment index and valgus tilt measurement for

- nondisplaced femoral neck fractures. J Pers Med 2022;13:53.
- 17. Geller JA, Saifi C, Morrison TA, Macaulay W. Tip-apex distance of intramedullary devices as a predictor of cut-out failure in the treatment of peritrochanteric elderly hip fractures. Int Orthop 2010;34:719-22.
- Ficat RP. Idiopathic bone necrosis of the femoral head. Early diagnosis and treatment. J Bone Joint Surg Br 1985;67:3-9.
- 19. Breiman L. Random forests. Mach Learn 2001;45:5-32.
- 20. Kuhn M, Johnson K. Applied predictive modeling. Springer; 2013.
- 21. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. Springer; 2009.
- 22. Lim EJ, Shon HC, Cho JW, Oh JK, Kim J, Kim CH. Dynamic hip screw versus cannulated cancellous screw in Pauwels type II or type III femoral neck fracture: a systematic review and meta-analysis. J Pers Med 2021;11:1017.
- 23. Zhou X, Guo S, Pan W, Zhang L, Ji H, Yang Y. The small screw-apex distance is potentially associated with femoral head osteonecrosis in adults with femoral neck fractures treated by closed reduction and percutaneous 3 parallel cannulated screws. BMC Musculoskelet Disord 2024;25:286.
- 24. Han S, Zhang ZY, Zhou K, et al. Positive buttress reduction in femoral neck fractures: a literature review. J Orthop Surg Res 2024:19:262
- 25. Qiu L, Huang Y, Li G, Wu H, Zhang Y, Zhang Z. Essential role of reliable reduction quality in internal fixation of femoral neck fractures in the non-elderly patients: a propensity score matching analysis. BMC Musculoskelet Disord 2022;23:346.
- **26.** Wang Y, Ma JX, Yin T, et al. Correlation between reduction quality of femoral neck fracture and femoral head necrosis based on biomechanics. Orthop Surg 2019;11:318-24.
- 27. Kim CH, Shin M, Lee D, Choi SJ, Moon DH. Hidden osteonecrosis of the femoral head after healed femoral neck fractures: magnetic resonance imaging study of 58 consecutive patients. Arch Orthop Trauma Surg 2022;142:1443-50.

Author correction: "Comparison of outcomes of reinforced tension band wiring and precontoured plate and screw fixation in the management of Mayo type IIIB olecranon fractures"

Hyun Goo Kang, MD ⁽ⁱ⁾, Tong Joo Lee, MD ⁽ⁱ⁾, Samuel Jaeyoon Won, MD ⁽ⁱ⁾

Department of Orthopedic Surgery, Inha University Hospital, Incheon, Korea

In the article titled "Comparison of outcomes of reinforced tension band wiring and precontoured plate and screw fixation in the management of Mayo type IIIB olecranon fractures" [1], two numerical errors were found in the Abstract that require correction.

On lines 7–8, "Of these, 11 patients underwent reinforced TBW, and 13 received precontoured PF" has been corrected to "Of these, 13 patients underwent reinforced TBW, and 11 received precontoured PF." This correction reflects the actual group sizes used in the statistical analysis, consistent with Table 1 and the rest of the manuscript.

On lines 18–19, "Reoperations were required in 15.8% of the reinforced TBW group due to hardware irritation" has been corrected to "Reoperations were required in 7.7% of the reinforced TBW group due to hardware irritation." This correction reflects the accurate number of reoperations (1 out of 13 patients), consistent with Table 3 and the Results section on page 99.

These corrections are limited to the Abstract and do not affect the study's results, statistical interpretations, or overall conclusions. The authors sincerely thank the readers and editors for their attention to this matter.

Reference

 Kang HG, Lee TJ, Won SJ. Comparison of outcomes of reinforced tension band wiring and precontoured plate and screw fixation in the management of Mayo type IIIB olecranon fractures. J Musculoskelet Trauma 2025;38:96-101.

Correction

Received: July 22, 2025 Accepted: July 22, 2025

Correspondence to:

Tong Joo Lee, MD
Department of Orthopedic Surgery, Inha
University Hospital, 27 Inhang-ro, Junggu, Incheon 22332, Korea
Tel: +82-32-890-2380
Email: tjlee@inha.ac.kr

© 2025 The Korean Orthopaedic Trauma Association.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Instructions for authors

Enacted from January 1, 1988 Last revision: December 20, 2024

1. GENERAL INFORMATION

The *Journal of Musculoskeletal Trauma* is the official publication of the Korean Orthopaedic Trauma Association. It is an international, peer-reviewed, open-access journal dedicated to advancing the science, education, and clinical care of musculoskeletal trauma. The journal was first launched in 1988 and is published quarterly on the 25th of January, April, July, and October. As of October 2024, the official language of the journal has been changed to English.

The journal covers a wide range of topics related to musculoskeletal injuries, including but not limited to: prevention, diagnosis, treatment, and rehabilitation of fractures, dislocations, and soft tissue injuries of both the extremities and the axial skeleton; advances in surgical techniques, implants, and prosthetic devices; biomechanical and biological research related to trauma and tissue healing; rehabilitation strategies for functional recovery; and clinical and translational research bridging basic science and clinical practice.

We invite submissions of original articles, reviews, letters to the editor, and editorial that contribute to the advancement of musculoskeletal trauma care. Manuscripts submitted to JMT should be prepared according to the following instructions. The journal adheres to the Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly Work in Medical Journals (http://www.icmje.org/) from the International Committee of Medical Journal Editors (ICMJE).

2. ARTICLE PROCESSING CHARGE

There are no author fees required for manuscript processing and/or publishing materials in the journal since all cost is supported by the publisher, the Korean Orthopaedic Trauma Association until there is a policy change. Therefore, it is the so-called platinum open-access journal.

3. RESEARCH AND PUBLICATION ETHICS

The journal adheres to the guidelines for research and publication described in the Committee on Publication Ethics (COPE) Guidelines (https://publicationethics.org/resources/guidelines) the ICMJE Recommendations (https://www.icmje.org), and the Good Publication Practice Guideline for Medical Journals (https://www.kamje.or.kr/board/view?b_name=bo_publication&bo_id=13). Furthermore, all processes addressing research and publication misconduct shall follow the flowchart of COPE (https://publicationethics.org/resources/flowcharts). Any attempts to duplicate publications or engage in plagiarism will lead to automatic rejection and may prejudice the acceptance of future submissions.

Statement of Human and Animal Rights

Clinical research should be conducted in accordance with the World Medical Association's Declaration of Helsinki (https://www.wma.net/what-we-do/medical-ethics/declaration-of-helsinki/). Any investigations involving humans and animals should be approved by the Research Ethics Committee (REC) or the Institutional Review Board (IRB) and Animal Care Committee, respectively, of the institution where the experiment was performed. JMT will not consider any studies involving humans or animals without appropriate approval. Such approval, along with the approval number and the name of the IRB or REC institution, should be stated in the Methods section of the manuscript. Informed consent must be obtained from patients participating in clinical investigations, unless waived by the IRB. In the case of an animal study, a statement should be provided indicating that the experimental procedures, such as the breeding and the use of laboratory animals, was approved by the REC of the institution where the experiment was performed or that it does not violate the rules of the REC of the institution or the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals

e-jmt.org į

(Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council). The authors should preserve raw experimental study data for at least 1 year after the publication of the paper and should present this data if required by the Editorial Board.

Protection of Privacy, Confidentiality, and Written Informed Consent

The ICMJE has recommended the following statement for the protection of privacy, confidentiality, and written informed consent: The rights of patients should not be infringed without written informed consent. Identifying details (patient's names, initials, hospital numbers, dates of birth, or other personal or identifying information, protected healthcare information) should not be published in written descriptions. Images of human subjects should not be used unless the information is essential for scientific purposes and explicit permission has been given as part of the consent. For individuals who cannot provide consent independently, including those from vulnerable populations—such as minors, the elderly, racial or ethnic minorities, individuals with certain health conditions, or those who are socioeconomically disadvantaged—consent should be obtained from a legally authorized representative or parent/guardian. Even where consent has been given, identifying details should be removed if they are not essential. If identifying characteristics are altered to protect anonymity, authors should provide assurances that such alterations do not distort scientific meaning. If consent has not been obtained, it is generally not sufficient to anonymize a photograph simply by using eye bars or blurring the face of the individual concerned.

Conflict of Interest

Authors are responsible for disclosing any financial support or benefit that might affect the content of the manuscript or might cause a conflict of interest. When submitting the manuscript, the author must attach a conflict of interest statement (https://e-jmt.org/authors/copyright_transfer_agreement.php). All authors should disclose their conflicts of interest, i.e., (1) financial relationships (such as employment, consultancies, stock ownership, honoraria, or paid expert testimony), (2) personal relationship, (3) academic competition, and (4) intellectual passion. These conflicts of interest must be included as a footnote on the

title page. Each author should certify the disclosure of any conflict of interest with their signature.

Originality, Plagiarism, and Duplicate Publication

Redundant or duplicate publication refers to the publication of a paper that overlaps substantially with one already published. Upon receipt, submitted manuscripts are screened for possible plagiarism or duplicate publication using Crossref Similarity Check. If a paper that might be regarded as duplicate or redundant had already been published in another journal or submitted for publication, the author should notify the fact in advance at the time of submission. Under these conditions, any such work should be referred to and referenced in the new paper. The new manuscript should be submitted together with copies of the duplicate or redundant material to the editorial committee. If redundant or duplicate publication is attempted or occurs without such notification, the submitted manuscript will be rejected immediately. If the editor was not aware of the violations and of the fact that the article had already been published, the editor will announce in the journal that the submitted manuscript had already been published in a duplicate or redundant manner, without seeking the author's explanation or approval.

Secondary Publication

It is possible to republish manuscripts if the manuscripts satisfy the conditions for secondary publication of the IC-MJE Recommendations, available from: https://www.icm-je.org/ as follows:

- (1) Certain types of articles, such as guidelines produced by governmental agencies and professional organizations, may need to reach the widest possible audience. In such instances, editors sometimes deliberately publish material that is also published in other journals with the agreement of the authors and the editors of those journals.
- (2) Secondary publication for various other reasons, in the same or another language, especially in other countries, is justifiable and can be beneficial provided that the following conditions are met. The authors have received approval from the editors of both journals (the editor concerned with secondary publication must have a photocopy, reprint, or manuscript of the primary version). The priority of the primary

ii e-jmt.org

- publication is respected by a publication interval of at least one week (unless specifically negotiated otherwise by both editors).
- (3) The paper for secondary publication is intended for a different group of readers; therefore, an abbreviated version could be sufficient. The secondary version faithfully reflects the data and interpretations of the primary version. The footnote on the title page of the secondary version informs readers, peers, and documenting agencies that the paper has been published in whole or in part and states the primary reference. A suitable footnote might read: "This article is based on a study first reported in the [title of a journal, with full reference]."

Authorship

Authorship credit should be based on substantial contributions to all four categories established by the ICMJE: (1) substantial contributions to conception or design of the work, acquisition of data, and analysis and interpretation of data; (2) drafting the work or revising it critically for important intellectual content; (3) final approval of the version to be published; and (4) agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

- The contributions of all authors must be described. JMT has adopted the CRediT Taxonomy (https://credit. niso.org/) to describe each author's individual contributions to the work. The role of each author should be addressed on the title page.
- Correction of authorship: Requests for corrections in authorship (such as adding or removing authors, or rearranging the order of authors) after the initial manuscript submission and before publication should be explained in writing to the editor, in a letter or email signed by all authors. A completed copyright assignment form must be submitted by every author.
- Role of corresponding author: The corresponding author takes primary responsibility for communication with the journal during the manuscript submission, peer review, and publication process. The corresponding author typically ensures that all of the journal's administrative requirements, such as providing the details of authorship, ethics committee approval, clin-

- ical trial registration documentation, and conflict of interest forms and statements, are properly completed, although these duties may be delegated to one or more co-authors. The corresponding author should be available throughout the submission and peer-review process to respond to editorial queries in a timely manner, and after publication, should be available to respond to critiques of the work and cooperate with any requests from the journal for data, additional information, or questions about the article.
- Contributors: Any researcher who does not meet all four ICMJE criteria for authorship discussed above but contributes substantively to the study in terms of idea development, manuscript writing, conducting research, data analysis, and financial support should have their contributions listed in the Acknowledgments section of the article.

Process for Managing Research and Publication Misconduct

When the journal faces suspected cases of research and publication misconduct, such as redundant (duplicate) publication, plagiarism, fraudulent or fabricated data, changes in authorship, undisclosed conflict of interest, ethical problems with a submitted manuscript, appropriation by a reviewer of an author's idea or data, and complaints against editors, the resolution process will follow the flow-chart provided by COPE (http://publicationethics.org/resources/flowcharts). The discussion and decision on the suspected cases are carried out by the Editorial Board.

Editorial Responsibilities

The Editorial Board will continuously work to monitor and safeguard publication ethics: guidelines for retracting articles; maintenance of the integrity of academic records; preclusion of business needs from compromising intellectual and ethical standards; publishing corrections, clarifications, retractions, and apologies when needed; and excluding plagiarized and fraudulent data. The editors maintain the following responsibilities: responsibility and authority to reject and accept articles; avoid any conflict of interest with respect to articles they reject or accept; promote the publication of corrections or retractions when errors are found; and preserve the anonymity of reviewers.

e-jmt.org iii

Artificial Intelligence (AI) Guideline

JMT adheres to the following guidelines specified by the ICMJE regarding the use of AI tools. These measures are essential to ensuring academic integrity and ethical standards.

- AI cannot be listed as an author: AI tools cannot be listed or cited as authors due to their inability to take responsibility for errors.
- Reliability and responsibility in AI use: Authors are responsible for ensuring the reliability of their papers when using AI tools and must take full responsibility for any plagiarism or false information generated by AI.
 Furthermore, AI-generated content cannot be cited as a primary source.
- Disclosure of AI use: Authors must disclose the use of AI tools at the time of manuscript submission. This disclosure should include the specific tools used, their model names, versions, manufacturers, and the role of the AI in the process. This information should be included in the Methods or Acknowledgments section, with detailed prompts included where relevant.
- Prohibition on AI-generated images and videos: AI-generated images or videos, which lack societal consensus on copyright, cannot be included in submitted manuscripts. However, exceptions may be made if AI is essential to the research design or methodology, in which case it must be explained in the Methods section.
- Restrictions for peer reviewers: Peer reviewers are prohibited from uploading manuscripts to external AI tools during the review process. If AI tools are used to support any part of the review, reviewers must transparently disclose this in their peer review reports.
- Editor's authority: the editor may refuse to proceed with the review of a paper if inappropriate use of AI is detected. Additionally, this policy may evolve in response to advancements in technology and societal agreements.

4. EDITORIAL POLICY

Copyright

Copyright in all published material is owned by the Korean Orthopaedic Trauma Association. Authors must agree to transfer copyright (https://e-jmt.org/authors/copyright_transfer_agreement.php) during the submission process.

The corresponding author is responsible for submitting the copyright transfer agreement to the publisher. In addition, if excerpts from other copyrighted works are included, the authors must obtain written permission from the copyright owners and credit the sources in the article.

Open-Access License

JMT is an open-access journal. Articles are distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Authors do not need permission to use tables or figures published in JMT in other journals, books, or media for scholarly and non-commercial purposes. For any commercial use of material from this open-access journal, permission must be obtained from Korean Orthopaedic Trauma Association (email: office@e-jmt.org).

Article Sharing (Author Self-Archiving) Policy

JMT is an open-access journal, and authors who submit manuscripts to JMT can share their research in several ways, including on preprint servers, social media platforms, at conferences, and in educational materials, in accordance with our open-access policy. However, it should be noted that submitting the same manuscript to multiple journals is strictly prohibited.

Registration of Clinical Trial Research

It is recommended that any research that deals with a clinical trial be registered with a clinical trial registration site, such as http://cris.nih.go.kr, or other primary national registry sites accredited by the World Health Organization (https://www.who.int/clinical-trials-registry-platform/network/primary-registries) or clinicaltrial.gov (http://clinicaltrials.gov/), a service of the United States National Institutes of Health.

Data Sharing Policy

JMT encourages data sharing wherever possible unless this is prevented by ethical, privacy, or confidentiality matters. Authors wishing to do so may deposit their data in a publicly accessible repository and include a link to the DOI within the text of the manuscript.

iv e-jmt.org

• Clinical Trials: JMT accepts the ICMJE Recommendations for data sharing statement policy. Authors may refer to the editorial, "Data Sharing Statements for Clinical Trials: A Requirement of the International Committee of Medical Journal Editors," in the Journal of Korean Medical Science (https://dx.doi.org/10.3346/ jkms.2017.32.7.1051). Archiving Policy In accordance with the Korean Library Act, the full text of the JMT can be archived in the National Library of Korea (https:// seoji.nl.go.kr/archive). JMT provides electronic archiving and preservation of access to the journal content in the event the journal is no longer published, by archiving in the National Library of Korea (https:// www.nl.go.kr/archive/search.do) and the National Library of Korea can permanently preserve submitted JMT papers.

Preprint Policy

A preprint can be defined as a version of a scholarly paper that precedes formal peer review and publication in a peer-reviewed scholarly journal. JMT allows authors to submit preprints to the journal. It is not treated as duplicate submission or duplicate publication. JMT recommends that authors disclose the existence of a preprint with its DOI in the letter to the editor during the submission process. Otherwise, a plagiarism check program— Similarity Check (Crossref) or Copy Killer—may flag the results as containing excessive duplication. A preprint submission will be processed through the same peer-review process as a usual submission. If a preprint is accepted for publication, the authors are recommended to update the information on the preprint site with a link to the published article in JMT, including the DOI at JMT. It is strongly recommended that authors cite the article in JMT instead of the preprint in their next submission to journals.

5. MANUSCRIPT SUBMISSION AND PEER-REVIEW PROCESS

Online Submission

All manuscripts should be submitted online via the journal's website (https://submit.e-jmt.org/) by the corresponding author. Once you have logged into your account, the online system will lead you through the submission process in a step by step. In case of any trouble, please con-

tact the editorial office (Email: fxsociety@kofs.or.kr).

Screening after Submission

The screening process will be conducted after submission. If the manuscript does not fit the aims and scope of the Journal or does not adhere to the Instructions to authors, it may be returned to the author immediately after receipt and without a review. Before review, all submitted manuscripts are inspected using "Similarity Check powered by iThenticate (https://www.crossref.org/services/similarity-check/), a plagiarism-screening tool. If a too high a degree of similarity score is found, the Editorial Board will do a more profound content screening. The criterion for similarity rate for further screening is usually 25%; however, the excess amount of similarity in specific sentences may be also checked in every manuscript. The settings for Similarity Check screening are as follows: It excludes quotes, a bibliography, small matches of 6 words, small sources of 1%, and the Methods section.

Peer-Review Process

All papers, including those invited by the Editor, are subject to peer review. Manuscripts will be peer-reviewed by two accredited experts in the musculoskeletal trauma care with one additional review by prominent member of our Editorial Board. The editor is responsible for the final decision whether the manuscript is accepted or rejected.

- The journal uses a double-blind peer-review process: the reviewers do not know the identity of the authors, and vice versa. During the peer-review process, reviewers may interact directly or exchange information (e.g., via submission systems or email) only with the editor, which is known as "independent review."
- JMT's average turnaround time from submission to decision is 4 weeks.
- Decision letter will be sent to corresponding author via registered email. Reviewers can request authors to revise the content. The corresponding author must indicate the modifications made in their item-by-item response to the reviewers' comments. Failure to resubmit the revised manuscript within 4 weeks of the editorial decision is regarded as a withdrawal.
- The editorial committee has the right to revise the manuscript without the authors' consent unless the revision substantially affects the original content.

e-jmt.org v

- After review, the Editorial Board determines whether the manuscript will be accepted for publication. Once rejected, the manuscript does not undergo another round of review.
- All articles in JMT include the dates of submission, revision, acceptance, and publication on their article page.
 No information about the review process or editorial decision process is published on the article page.

Submission by Editors

All manuscripts from editors, employees, or members of the Editorial Board are processed in the same way as other unsolicited manuscripts. During the review process, submitters will not engage in the selection of reviewers or the decision process. Editors will not handle their manuscripts even if the manuscripts are commissioned.

The conflict of interest declaration should be added as follows.

Conflicts of Interest: OOO has been an Editorial Board member of *Journal of Musculoskeletal Trauma* since OOO but has no role in the decision to publish this article. No other potential conflicts of interest relevant to this article were reported.

Feedback after Publication

If the authors or readers find any errors or contents that should be revised, it can be requested from the Editorial Board. The Editorial Board may consider correction, or a retraction. If there are any revisions to the article, there will be a CrossMark description to announce the final draft. If there is a reader's opinion on the published article with the form of Letter to the editor, it will be forwarded to the authors. The authors can reply to the reader's letter. Letter to the editor and the author's reply may be also published.

Appeals of Decisions

Any appeal against an editorial decision must be made within 2 weeks of the date of the decision letter. Authors who wish to appeal a decision should contact the Editor-in-Chief, explaining in detail the reasons for the appeal. All appeals will be discussed with at least one other associate editor. If consensus cannot be reached thereby, an appeal will be discussed at a full editorial meeting. The process of handling complaints and appeals follows the guidelines of COPE available from https://publicationeth-

ics.org/appeals. JMT does not consider second appeals.

6. MANUSCRIPT PREPARATION

Authors are required to submit their manuscripts after reading the following instructions. Any manuscript that does not conform to the following requirements will be deemed inappropriate and may be returned.

General Requirements

- All manuscripts should be written in English.
- The manuscript must be written using Microsoft Word and saved as ".doc" or ".docx" format. The font size should be 12 points. The body text must be left-aligned, double-spaced, and presented in a single column. The left, right, and bottom margins must be 3 cm, but the top margin must be 3.5 cm.
- The page numbers should be placed in Arabic numerals at the center of the bottom margin, starting from the abstract page.
- Neither the authors' names nor their affiliations should appear on the manuscript pages.
- Only standard abbreviations should be used. Abbreviations should be avoided in the title of the manuscript.
 Abbreviations should be spelled out when first used in the text and the use of abbreviations should be kept to a minimum.
- The names of manufacturers of equipment and non-generic drugs should be given.
- Authors should express all measurements in conventional units, using International System (SI) units.
- P-value from statistical testing should be expressed as capital P.

Reporting Guidelines for Specific Study Designs

For the specific study design, it is recommended that authors follow the reporting guidelines, such as CONSORT (http://www.consort-statement.org) for randomized controlled trials, STROBE (http://www.strobe-statement.org) for observational studies, and PRISMA (http://www.prisma-statement.org) for systematic reviews and meta-analyses. A good source of reporting guidelines is the EQUATOR Network (https://www.equator-network.org/) and NLM (https://www.nlm.nih.gov/services/research_report_guide.html).

vi e-jmt.org

Types of Manuscripts

- The manuscript types are divided into original articles, reviews, letters to the editor, and editorial, and other types.
- Original Article: Original articles should be written in the following order: title page, abstract (within 300 words), keywords, main body (introduction, methods, results, discussion, and conclusions), acknowledgments (if applicable), references (up to 30), tables, figure legends, and figures.
- Review Articles: Review articles should focus on a specific topic. The format of a review article is flexible. Publication of these articles will be decided upon by the Editorial Board.
- Letters to the Editor: The journal welcomes readers' comments on recently published articles or orthopedic topics of interest. Letters to the editor should not exceed 1,000 words, excluding references, tables, and figures. A maximum of 5 references and total 4 figures or tables are allowed.
- Editorial: Editorials are invited by the editors and should be commentaries on articles recently published in the journal. Editorial topics could include active areas of research, fresh insights, and debates in the field of orthopedic surgery. Editorials should not exceed 1,000 words, excluding references, tables, and figures. A maximum of 10 references and total 4 figures or tables are allowed.
- Systematic Review: Systematic review examines published material on a clearly described subject in a systematic way. There must be a description of how the evidence on this topic was tracked down, from what sources and with what inclusion and exclusion criteria.
- Meta-Analysis: A systematic overview of studies that pools
 the results of two or more studies to provide an overall answer to a research question or interest. Summarizes quantitatively the evidence regarding a treatment, procedure,
 or association.

Table 1. Recommended maximums for articles submitted to JMT^{a)}

Type of article	Abstract (word)	Text (word) ^{b)}	References	Tables & Figures
Original Article	Structured, 300	NL	30	NL
Review	Unstructured, 300	NL	NL	NL
Letter to the Editor	-	1,000	5	4
Editorial	-	1,000	10	4

^{a)}The requirements for the number of references, tables and figures and length of the main text can be consulted with the Editorial Office; ^{b)}Excluding an abstract, tables, figures, acknowledgments, and references.

Format of Manuscript Title page

- The title page must include the title, the authors' names, academic degrees, affiliations, and the corresponding author's name and contact information. The corresponding author's contact information must include their name and email. In addition, a running title must be provided, with a maximum of 50 characters, including spaces.
- ORCID: We recommend that the open researcher and contributor ID (ORCID) of all authors be provided. To have an ORCID, authors should register in the ORCID website (http://orcid.org/).
- Author Contributions: The contributions of all authors must be described using the CRediT (https://credit.niso.org/) taxonomy of author roles.
- Conflict of Interest: If there are any conflicts of interest, authors should disclose them in the manuscript. If there are no conflicts of interest, authors should state "None" in this section.
- Funding: All sources of funding for the study should be stated here explicitly.
- Acknowledgments: Any persons who contributed to the study or manuscript but do not meet the criteria for authorship should be acknowledged here. If you do not have anyone to acknowledge, please write "None" in this section.

Abstract and keywords

Each paper should begin with an abstract not exceeding 300 words (for original articles and reviews). The abstract for original articles should state the background, methods, results, and conclusions in each paragraph in a brief and coherent manner. Relevant numerical data should be included. Under the abstract, keywords should be provided (maximum of 5). Authors are encouraged to use the MeSH database to find Medical Subject Headings at http://www.nlm.nih.gov/mesh/meshhome.html. The structured abstract should be divided into the following sections.

- Background: The rationale, importance, or objectives
 of the study should be described briefly and concisely
 in one to two sentences. The objective should be consistent with that stated in the Introduction.
- Methods: The procedures conducted to achieve the study objective should be described in detail, together with relevant details concerning how data were ob-

e-jmt.org vii

- tained and analyzed and how research bias was adjusted.
- Results: The most important study results and analysis should be presented in a logical manner with specific experimental data.
- Conclusions: The conclusions drawn from the results should be described in one to two sentences and must align with the study objective.
- Level of Evidence: Author should make the final determination of the study design and level of evidence based on the Centre for Evidence Based Medicine guidelines. Authors may refer to the definitions in the Level of Evidence table (https://www.cebm.ox.ac.uk/files/levels-of-evidence/cebm-levels-of-evidence-2-1.pdf).

Main Body

- All articles using clinical samples or data and those involving animals must include information on the IRB/IACUC approval or waiver and informed consent. An example is shown below. "We conducted this study in compliance with the principles of the Declaration of Helsinki. The study protocol was reviewed and approved by the Institutional Review Board of OO (No. OO). Written informed consent was obtained / Informed consent was waived."
- Description of participants: Ensure the correct use of the terms "sex" (when reporting biological factors) and "gender" (identity, psychosocial, or cultural factors), and, unless inappropriate, report the sex and/or gender of study participants, the sex of animals or cells, and describe the methods used to determine sex and gender. If the study was done involving an exclusive population, for example, in only one sex, authors should justify why, except in obvious cases (e.g., ovarian cancer). Authors should define how they determined race or ethnicity and justify their relevance.
- Introduction: State the background or problem that led to the initiation of the study. Introduction is not a book review, rather it is best when the authors bring out controversies which create interest. Lead systematically to the hypothesis of the study, and finally, to a restatement of the study objective, which should match that in the Abstract. Do not include conclusions in the Introduction.

- Methods: Describe the study design (prospective or retrospective, inclusion and exclusion criteria, duration of the study) and the study population (demographics, length of follow-up). Explanations of the experimental methods should be concise, yet enable replication by a qualified investigator.
- Results: This section should include detailed reports on the data obtained during the study. All data in the text must be presented in a consistent manner throughout the manuscript. All issues which the authors brought up in the method section need to be in result section. Also, it is preferred that data be in figures or tables rather than a long list of numbers. Instead, numbers should be in tables or figures with key comments on the findings.
- Discussion: The first paragraph of the discussion should deal with the key point in this study. Do not start with an article review or general comment on the study topic. In the Discussion, data should be interpreted to demonstrate whether they affirm or refute the original hypothesis. Discuss elements related to the purpose of the study and present the rationales that support the conclusion drawn by referring to relevant literature. Discussion needs some comparison of similar papers published previously, and discuss why your study is different or similar from those papers. Care should be taken to avoid information obtained from books, historical facts, and irrelevant information. A discussion of study weaknesses and limitations should be included in the last paragraph of the discussion.
- Conclusions: Briefly state the answer to your question or hypothesis in the Introduction. Describe carefully to draw conclusions only from your results and verify that your data firmly support your conclusions. The conclusions in the text and those in the abstract must have the same content.
- References must be numbered with superscripts according to their quotation order. When more than two quotations of the same authors are indicated in the main body, a comma must be placed between a discontinuous set of numbers, whereas a dash must be placed between the first and last numerals of a continuous set of numbers: "Kim et al. [2,8,9] insisted..." and "However, Park et al. [11-14] showed opposing research results."
- Figures and tables used in the main body must be indi-

viii e-jmt.org

cated as "Fig." and "Table." For example, "Magnetic resonance imaging of the brain revealed... (Figs. 1-3).

References

- The number of references is recommended to be 30 for original articles.
- All references must be cited in the text. The number assigned to the reference citation is according to the first appearance in the manuscript. References in tables or figures are also numbered according to the appearance order. Reference numbers in the text, tables, and figures should in a bracket ([]).
- List all authors when there are six or fewer. When there are seven or more authors, list only the first three authors followed by "et al."
- Authors should be listed by surname followed by initials.
- The journals should be abbreviated according to the style used in the list of journals indexed in the NLM Journal Catalog (http://www.ncbi.nlm.nih.gov/nlmcatalog/journals).
- Overlapping page numbers (e.g., 2025-6) should omit the repeated numerals (e.g., 2025-6 should be written as 2025-2026).
- References to unpublished material, such as personal communications and unpublished data, should be noted within the text and not cited in the References. Personal communications and unpublished data must include the individual's name, location, and date of communication.
- Examples of references are as follows:
 - ① Journal
 - Song HK, Cho WT, Choi WS, Sakong SY, Im S. Acute compartment syndrome of thigh: ten-year experiences from a level I trauma center. J Musculoskelet Trauma 2024;37:171-4.
 - MacKechnie MC, Shearer DW, Verhofstad MH, et al. Establishing consensus on essential resources for musculoskeletal trauma care worldwide: a modified Delphi study. J Bone Joint Surg Am 2024;106:47-55.
 - 3. Raats JH, Ponds NH, Brameier DT, et al. Agreement between patient- and proxy-reported outcome measures in adult musculoskeletal trauma and injury: a scoping review. Qual Life Res 2024 Aug 23 [Epub]. https://10.1007/s11136-024-03766-1
 - (2) Book & Book chapter
 - 4. Townsend CM, Beauchamp RD, Evers BM, Mattox K.

- Sabiston textbook of surgery. 21st ed. Elsevier; 2021.
- Meltzer PS, Kallioniemi A, Trent JM. Chromosome alterations in human solid tumors. In: Vogelstein B, Kinzler KW, eds. The genetic basis of human cancer. McGraw-Hill; 2002. p. 93-113.
- ③ Homepage/Web site
- 6. World Health Organization (WHO). World health statistics 2021: a visual summary [Internet]. WHO; 2021 [cited 2023 Feb 1]. Available from: https://www.who.int/data/stories/world-health-statistics-2021-a-visual-summary
- 4 Preprint
- 7. Sharma N, Sharma P, Basu S, et al. The seroprevalence and trends of SARS-CoV-2 in Delhi, India: a repeated population-based seroepidemiological study [Preprint]. Posted 2020 Dec 14. medRxiv 2020.12.13.20248123. https://doi.org/10.1101/2020.12.13.20248123

For more on references, refer to the NLM's "Samples of Formatted References for Authors of Journal Articles." https://www.nlm.nih.gov/bsd/uniform_requirements.html#journals.

Figures and Figure Legends

Figures should be cited in the text and numbered using Arabic numerals in the order of their citation (e.g., Fig. 1). Figures are not embedded within the text. Each figure should be submitted as an individual file. The figure legends should begin on the next page after the last table. Every figure has its own legend. Abbreviations and additional information for any clarification should be described within each figure legend. Footnotes below the figure should follow the order of abbreviation first, followed by symbols. Symbols should be marked with small alphabet letters in the order of their usage, such as a, b, c, or asterisks (*) for statistical significance. Figure files are submitted in EPS, TIFF, or PDF formats. The requirement for minimum resolutions is dependent on figure types. For line drawings, 1,200 dpi are required. For grey color works (i.e., pictures of gel or blots), 600 dpi is required. For color or half-tone artwork, 300 dpi is required. The files should be named according to the figure number.

 Staining techniques used should be described. Photomicrographs with no inset scale should have the magnification of the print in the legend.

e-jmt.org jx

- Papers containing unclear photographic prints may be rejected.
- Remove any writing that could identify a patient.
- If any tables or figures are taken or modified from other papers, authors should obtain permission through the Copyright Clearance Center (https://www.copyright.com/) or from the individual publisher, unless they are from open access journals under the Creative Commons License. For tables or figures from an open access journal, simply verify the source of the journal precisely in the accompanying footnote. Please note the distinction between a free access journal and an open access journal: it is necessary to obtain permission from the publisher of a free access journal for using tables or figures published therein. Examples are shown below: Reprinted (Modified) from Tanaka et al. [48], with per-

Reprinted (Modified) from Weiss et al. [2], according to the Creative Commons License.

Tables

mission of Elsevier.

- Tables should be numbered sequentially with Arabic numerals in the order in which they are mentioned in the text
- If an abbreviation is used in a table, it should be defined in a footnote below the table.
- Additional information for any clarification should be designated for citation using alphabetical superscripts ^{a)}, ^{b)}, ^{c)} or asterisks (*) for statistical significance. The explanation for superscript citation should follow these examples: ^{a)}Not tested.
- *P<0.05, **P<0.01, ***P<0.001.
- Tables should be understandable and self-explanatory, without references to the text.
- If a table has been previously published, it should be accompanied by the written consent of the copyright holder, and the footnote must acknowledge the original source.

7. MANUSCRIPT PROCESSING AFTER ACCEPTANCE

Final Version

After the paper has been accepted for publication, the authors should submit the final version of the manuscript. The names and affiliations of the authors should be double-checked, and if the originally submitted image files were of poor resolution, higher-resolution image files should be submitted at this time. Symbols (e.g., circles, triangles, squares), letters (e.g., words, abbreviations), and numbers should be large enough to be legible on reduction to the journal's column widths. All symbols must be defined in the figure caption. If references, tables, or figures are moved, added, or deleted during the revision process, renumber them to reflect such changes so that all tables, references, and figures are cited in numeric order.

Manuscript Corrections

Before publication, the manuscript editor will correct the manuscript such that it meets the standard publication format. The authors must respond within two days when the manuscript editor contacts the corresponding author for revisions. If the response is delayed, the manuscript's publication may be postponed to the next issue.

Proof

The authors will receive the final version of the manuscript as a PDF file. Upon receipt, the authors must notify the editorial office (or printing office) of any errors found in the file within two days. Any errors found after this time are the responsibility of the authors and will have to be corrected as a correction.

Correction

To correct errors in published articles, the corresponding author should contact the journal's Editorial Office with a detailed description of the proposed correction. Corrections that profoundly affect the interpretation or conclusions of the article will be reviewed by the editors. Corrections will be published as author correction or publisher correction in a later issue of the journal.

x e-jmt.org

History

Revised on

January 1, 1999

January 1, 2006

November 1, 2006

April 28, 2008

July 1, 2008

February 1, 2012

July 1, 2012

July 1, 2016

March 1, 2019

September 1, 2020

August 6, 2024

December 20, 2024

Checklist

☐ Manuscript in MS-WORD (DOC, DOCX) format.
☐ Double-spaced typing with 12-point font.
☐ Sequence of title page, abstract and keywords, introduction, methods, results, discussion, and conclusions, acknowledgments, references, tables, and figure legends. All pages and manuscript text with line should be numbered sequentially, starting from the abstract.
\Box Title page with article title, authors' full name(s) and affiliation(s), address for correspondence (including telephone number, email address, and fax number), running title (less than 50 characters), and acknowledgments, if any.
\square Abstract in structured format up to 300 words for original articles. Keywords (up to 5) from the MeSH list of Index Medicus.
\square All table and figure numbers are found in the text.
\square Figures as separate files, in TIFF, JPG, GIF, or PPT format.
\square References listed in proper format. All references listed in the reference section are cited in the text and vice versa.

xii e-jmt.org

Copyright transfer agreement

Manuscript Title	

I. Copyright Transfer Form

The authors hereby transfer all copyrights in and to the manuscript titled above, in all forms and media, whether now known or hereafter developed, to the Korean Orthopaedic Trauma Association effective upon the manuscript's acceptance for publication in the *Journal of Musculoskeletal Trauma*. The authors retain all proprietary rights other than copyright, such as patent rights.

Everyone listed as an author on this manuscript has made a substantial, direct, and intellectual contribution to the work and assumes public responsibility for its content. This manuscript represents original work that has not previously published and is not currently under consideration for publication in any other journal.

II. Conflict of Interest Disclosure Form

All authors are responsible for identifying and disclosing any potential conflicts of interest that could bias their work. This includes disclosing all financial support and any other personal connections in the acknowledgments.

Please select the appropriate option below:

No author of this manuscript has any conflicts of interest, including specific financial interests, relationships, and/or affiliations relevant to the subject matter or materials discussed in this manuscript.

OR

The authors certify that all conflicts of interest, as applicable to each author, including specific financial interests, relationships, and/or affiliations relevant to the subject matter or materials discussed, are disclosed in the manuscript. (*Please provide detailed descriptions of these interests if applicable*.)

e-jmt.org xiii

Such interests may include, but are not limited to, the following:

- Employment
- Consultancy within the past two years
- · Ownership interests, including stock options, in a start-up company whose stock is not publicly traded
- Ownership interests, including stock options, excluding indirect investments through mutual funds, in a publicly traded company
- · Research funding
- Honoraria directly received from an entity
- Paid expert testimony within the past two years
- Any other financial relationships (e.g., receiving royalties)
- $\bullet \ Membership \ on \ another \ entity's \ Board \ of \ Directors \ or \ advisory \ committees, \ whether for \ profit \ or \ non-for-profit.$

All authors certify that the work followed the research ethics and have approved the submission of the manuscript for publication.

List the names of all authors in the correct order.		
The corresponding author signs this copyright	agreement on behalf of all the co-authors.	
Name(s) of the corresponding author(s):		
Signature:	Date:	

xiv e-jmt.org

Conflict of interest form

Manuscript Title			
	ne submission process, Journal of an any conflicts of interest or finan		
	aterest form, each and every unde ant financial relationships except		
Author Name	Signed	Date	(DD/ MM/ YY)
Author Name	Signed	Date	(DD/ MM/ YY)
Author Name	Signed	Date	(DD/ MM/ YY)
Author Name	Signed	Date	(DD/ MM/ YY)
Author Name	Signed	Date	(DD/ MM/ YY)
Author Name	Signed	Date	(DD/ MM/ YY)
		·	